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Preface

We are drowning in information and starving for knowledge.

—Rutherford D. Roger

The field of Statistics is constantly challenged by the problems that science
and industry brings to its door. In the early days, these problems often came
from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical
problems have exploded both in size and complexity. Challenges in the
areas of data storage, organization and searching have led to the new field
of “data mining”; statistical and computational problems in biology and
medicine have created “bioinformatics.” Vast amounts of data are being
generated in many fields, and the statistician’s job is to make sense of it
all: to extract important patterns and trends, and understand “what the
data says.” We call this learning from data.

The challenges in learning from data have led to a revolution in the sta-
tistical sciences. Since computation plays such a key role, it is not surprising
that much of this new development has been done by researchers in other
fields such as computer science and engineering.

The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is to pre-
dict the value of an outcome measure based on a number of input measures;
in unsupervised learning, there is no outcome measure, and the goal is to
describe the associations and patterns among a set of input measures.



viii Preface

This book is our attempt to bring together many of the important new
ideas in learning, and explain them in a statistical framework. While some
mathematical details are needed, we emphasize the methods and their con-
ceptual underpinnings rather than their theoretical properties. As a result,
we hope that this book will appeal not just to statisticians but also to
researchers and practitioners in a wide variety of fields.

Just as we have learned a great deal from researchers outside of the field
of statistics, our statistical viewpoint may help others to better understand
different aspects of learning:

There is no true interpretation of anything; interpretation is a
vehicle in the service of human comprehension. The value of
interpretation is in enabling others to fruitfully think about an
idea.

—Andreas Buja

We would like to acknowledge the contribution of many people to the
conception and completion of this book. David Andrews, Leo Breiman,
Andreas Buja, John Chambers, Bradley Efron, Geoffrey Hinton, Werner
Stuetzle, and John Tukey have greatly influenced our careers. Balasub-
ramanian Narasimhan gave us advice and help on many computational
problems, and maintained an excellent computing environment. Shin-Ho
Bang helped in the production of a number of the figures. Lee Wilkinson
gave valuable tips on color production. Ilana Belitskaya, Eva Cantoni, Maya
Gupta, Michael Jordan, Shanti Gopatam, Radford Neal, Jorge Picazo, Bog-
dan Popescu, Olivier Renaud, Saharon Rosset, John Storey, Ji Zhu, Mu
Zhu, two reviewers and many students read parts of the manuscript and
offered helpful suggestions. John Kimmel was supportive, patient and help-
ful at every phase; MaryAnn Brickner and Frank Ganz headed a superb
production team at Springer. Trevor Hastie would like to thank the statis-
tics department at the University of Cape Town for their hospitality during
the final stages of this book. We gratefully acknowledge NSF and NIH for
their support of this work. Finally, we would like to thank our families and
our parents for their love and support.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Stanford, California
May 2001

The quiet statisticians have changed our world; not by discov-
ering new facts or technical developments, but by changing the
ways that we reason, experiment and form our opinions ....

—Jan Hacking
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1

Introduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

e Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack. The prediction is to be based on demo-
graphic, diet and clinical measurements for that patient.

e Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

o Identify the numbers in a handwritten ZIP code, from a digitized
image.

e Estimate the amount of glucose in the blood of a diabetic person,
from the infrared absorption spectrum of that person’s blood.

¢ Identify the risk factors for prostate cancer, based on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have an
outcome measurement, usually quantitative (like a stock price) or categor-
ical (like heart attack/no heart attack), that we wish to predict based on
a set of features (like diet and clinical measurements). We have a training
set of data, in which we observe the outcome and feature measurements



2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl I our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 090 0.07 043 0.11 0.18 0.42 0.29 0.01

for a set of objects (such as people). Using this data we build a predic-
tion model, or learner, which will enable us to predict the outcome for
new unseen objects. A good learner is one that accurately predicts such an
outcome.

The examples above describe what is called the supervised learning prob-
lem. Tt is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only the features and have no measurements of the outcome.
Our task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of the last chapter.

Here are some examples of real learning problems that are discussed in
this book.

Frample 1: Email Spam

The data for this example consists of information from 4601 email mes-
sages, in a study to try to predict whether the email was junk email, or
“spam.” The objective was to design an automatic spam detector that
could filter out spam before clogging the users’ mailboxes. For all 4601
email messages, the true outcome (email type) email or spam is available,
along with the relative frequencies of 57 of the most commonly occurring
words and punctuation marks in the email message. This is a supervised
learning problem, with the outcome the class variable email/spam. It is also
called a classification problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule like

if (%george < 0.6) & (%you > 1.5)  then spam
else email.

Another form of rule would be:

if (0.2 - %you — 0.3 %george) >0  then spam
else email.
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FIGURE 1.1. Scatterplot matriz of the prostate cancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are categorical.

For this problem not all errors are equal; we want to avoid filtering out
good email, while letting spam get through is not desirable but less serious
in its consequences. We discuss a number of different methods for tackling
this learning problem in the book.

Ezample 2: Prostate Cancer

The data for this example, displayed in Figure 1.1, come from a study by
Stamey et al. (1989) that examined the correlation between the level of
prostate specific antigen (PSA) and a number of clinical measures, in 97
men who were about to receive a radical prostatectomy.

The goal is to predict the log of PSA (1psa) from a number of measure-
ments including log-cancer-volume (1cavol), log prostate weight lweight,
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FIGURE 1.2. Ezamples of handwritten digits
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rom U.S. postal envelopes.

age, log of benign prostatic hyperplasia amount 1bph, seminal vesicle in-
vasion svi, log of capsular penetration lcp, Gleason score gleason, and
percent of Gleason scores 4 or 5 pggd5. Figure 1.1 is a scatterplot matrix
of the variables. Some correlations with 1psa are evident, but a good pre-
dictive model is difficult to construct by eye.

This is a supervised learning problem, known as a regression problem,
because the outcome measurement is quantitative.

Ezample 3: Handwritten Digit Recognition

The data from this example come from the handwritten ZIP codes on
envelopes from U.S. postal mail. Each image is a segment from a five digit
ZIP code, isolating a single digit. The images are 16 x 16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The images have been normalized to have approximately the same size
and orientation. The task is to predict, from the 16 x 16 matrix of pixel
intensities, the identity of each image (0,1,...,9) quickly and accurately.
If it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a classification problem
for which the error rate needs to be kept very low to avoid misdirection of
mail. In order to achieve this low error rate, some objects can be assigned
to a “don’t know” category, and sorted instead by hand.
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Ezample 4: DNA ,Expressz’on‘_Mz'c,roa’r%ay‘suv :

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relative to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random sample of 100 rows are shown. The fig-
ure displays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion profiles across genes?

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

(c) do certain genes show very high (or low) expression for certain cancer
samples?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples, with the response variable being
the level of expression. However, it is probably more useful to view it as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830—dimensional space, which we want
to cluster together in some way. -
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FIGURE 1.3. DNA microarray data: expression matriz of 6830 genes (rows)
and 64 samples (columns), for the human tumor data. Only a random sample
of 100 rows are shown. The display is a heat map, ranging from bright green
(negative, under expressed) to bright red (positive, over expressed). Missing values
are gray. The rows and columns are displayed in a randomly chosen order.
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Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics including linear regression.

We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlying concepts and considerations
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How this Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods like
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

In Chapters 9-13 we describe a series of structured methods for super-
vised learning, with Chapters 9 and 11 covering regression and Chapters 12
and 13 focussing on classification. Finally, in Chapter 14 we describe meth-
ods for unsupervised learning.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including how the computations scale
with the number of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.

We recommend that Chapters 1-4 be first read in sequence. Chapter
7 should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.
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The symbol @‘ indicates a technically difficult section, one that can
be skipped without interrupting the flow of the discussion.

Book Website
The website for this book is located at

http://www-stat.stanford.edu/ElemStatLearn

It contains a number of resources, including many of the datasets used in
this book.

Note for Instructors

We have successively used this book as the basis for a two-quarter course,
and with additional materials, it could even be used for a three-quarter
sequence. Exercises are provided at the end of each chapter. It is important
for students to have access to good software tools for these topics. We used
the S-PLUS programming language in our courses.



2

Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapter 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the predictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. The outputs are called the responses, or classically the dependent
variables.

2.2 Variable Types and Terminology

The outputs vary in nature among the examples. In the glucose prediction
example, the output is a quantitative measurement, where some measure-
ments are bigger than others, and measurements close in value are close
in nature. In the famous Iris discrimination example due to R. A. Fisher,
the output is qualitative (species of Iris) and assumes values in a finite set
G = {Virginica, Setosa and Versicolor}. In the handwritten digit example
the output is one of 10 different digit classes: G = {0,1,...,9}. In both of
these there is no explicit ordering in the classes, and in fact often descrip-
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tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and clas-
sification when we predict qualitative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can have some of each of qual-
itative and quantitative input variables. These have also led to distinctions
in the types of methods that are used for prediction: some methods are
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitative variables are typically represented numerically by codes. The
easiest case is when there are only two classes or categories, such as “suc-
cess” or “failure,” “survived” or “died.” These are often represented by a
single binary digit or bit as 0 or 1, or else by —1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is “on” at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X;. Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Observed values are written in lowercase; hence the
ith observed value of X is written as z; (where z; is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example,
a set of N input p-vectors z;, ¢ = 1,... , N would be represented by the
N x p matrix X. In general vectors will not be bold, except when they have
N components; this convention distinguishes a p-vector of inputs x; for the
ith observation from the N-vector x; consisting of all the observations on
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variable X;. Since all vectors are assumed to be column vectors, the ith
row of X is 27, the vector transpose of ;.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a good prediction of the output Y,
denoted by ¥ (pronounced “y-ha ”). If Y takes values in IR then so should
Y; likewise for categorical outputs, G should take values in the same set G
associated with G. '

For a two-class G, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions Y will
typically lie in [0,1], and we can assign to G the class label according to
whether § > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a set of measurements (z;,y;) or (;,9;), 1 = .
1,...,N, known as the training data, with which to construct our predic-
tion rule. '

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
linear model fit by least squares and the k-nearest-neighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but can be unstable.

2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
X = (X1, Xs,...,X,), we predict the output Y via the model

p
Y =5+) XB. (2.1)
Jj=1

The term fJy is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include Gy in
the vector of coefficients 3, and then write the linear model in vector form
as an inner product

Vv =XxT3, (2.2)
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where X7 denotes vector or matrix transpose (X being a column vector)
Here we are modeling a single output, so Y is a scalar; in general Y can be
a K-vector, in which case 8 would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input-output space, (X,Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an affine set cutting the Y-axis at the point
(0, Bo). From now on we assume that the intercept is included in A.

Viewed as a function over the p-dimensional input space, f(X) = X T3
is linear, and the gradient f'(X) = 3 is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coefficients 3 to minimize the
residual sum of squares

N

RSS(8) = ) (vi — =i B)"- (23)

i=1

RSS(f) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS() = (y — XB)" (y — X0), (2.4)

where X is an N X p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. 3 we get
the normal equations

XT(y - X8) = 0. (2.5)
If XTX is nonsingular, then the unique solution is given by
B=(X"X)"'X"y, (2.6)

and the fitted value at the ith input z; is §; = §(z:) = 2T 3. At an arbi-
trary input zo the prediction is y(xo) =1 B The entire fitted surface is
characterized by the p parameters ﬂ Intuitively, it seems that we do not
need a very large data set to fit such a model.

Let’s look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs Xy and
X5. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values GREEN or RED,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for GREEN and 1 for RED. The fitted values Y are
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Linear Regression of 0/1 Response

FIGURE 2.1. A classification ezample in two dimensions. The classes are coded
as a binary variable—GREEN = 0, RED = 1—and then fit by linear regression. The
line is the decision boundary defined by =78 = 0.5. The red shaded region denotes
that part of input space classified as RED, while the green region is classified as
GREEN.

converted to a fitted class variable G according to the rule

(2.7)

. |RED iV >05
GREEN if Y < 0.5.

The set of points in IR? classified as RED corresponds to {z : T3 > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by
the decision boundary {z : 273 = 0.5}, which is linear in this case. We
see that for these data there are several misclassifications on both sides
of the decision boundary. Perhaps our linear model is too rigid— or are
such errors unavoidable? Remember that these are errors on the training
data itself, and we have not said where the constructed data came from.
Consider the two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.
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Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative model.
One first generates a discrete variable that determines which of the compo-
nent Gaussians to use, and then generates an observation from the chosen
density. In the case of one Gaussian per class, we will see in Chapter 4 that
a linear decision boundary is the best one can do, and that our estimate is
almost optimal. The region of overlap is inevitable, and future data to be
predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difficult to obtain.

We now look at another classification and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far better suited to the second scenario.

2.3.2  Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set 7" clos-
est in input space to z to form Y. Specifically, the k-nearest neighbor fit
for Y is defined as follows:

Tw=r Y w 25)

2, €Ny (z)

where N (z) is the neighborhood of x defined by the & closest points x; in
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we find the k observations with
x; closest to z in input space, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method
of fitting. Thus Y is the proportion of RED’s in the neighborhood, and so
assigning class RED to G if Y > 0.5 amounts to a majority vote in the
neighborhood. The colored regions indicate all those points in input space
classified as GREEN or RED by such a rule, in this case found by evaluating the
procedure on a fine grid in input space. We see that the decision boundaries
that separate the GREED from the RED regions are far more irregular, and
respond to local clusters where one class dominates.

Figure 2.3 shows the results for l-nearest-neighbor classification: Y is
assigned the value gy, of the closest point z; to x in the training data. In
this case the regions of classification can be computed relatively easily, and
correspond to a Voronoi tessellation of the training data. Each point z;
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15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification ezample in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (GREEN = O,RED = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

has an associated tile bounding the region for which it is the closest input
point. For all points « in the tile, G(z) = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although k¥ = 1 would
be an unlikely choice. ‘

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
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1-Nearest Neighbor Ciassifier

FIGURE 2.3. The same classification ezample in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (GREEN = 0,RED = 1), and
then predicted by 1-nearest-neighbor classification.

were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

Tt is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

2.3.8 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.
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FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The red curves are test and the green are training error for
k-nearest-neighbor classification. The results for linear regression are the bigger
green and red squares at three degrees of freedom. The purple line is the optimal
Bayes Error Rate. :

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N((1,0)T,I) and labeled this class
GREEN. Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
RED. Then for each class we generated 100 observations as follows: for each
observation, we picked an mj, at random with probability 1/10, and then
generated a N(myg,1/5), thus leading to a mixture of Gaussian clusters for
each class. Figure 2.4 shows the results of classifying 10,000 new observa-
tions generated from the model. We compare the results for least squares
and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.
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The following list describes some ways in which these simple procedures
have been enhanced:

¢ Kernel methods use weights that decrease smoothly to zero with dis- -
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.

e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

o Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
linearly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IR? denote a
real valued random input vector, and Y € IR a real valued random out-
put variable, with joint distribution Pr(X,Y). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a loss
function L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))%
This leads us to a criterion for choosing f,

EPE(f) = E(Y - f(X))? (2.9)
[ @)Prida, ), (2.10)

the expected (squared) prediction error. By conditioning* on X, we can
write EPE as

EPE(f) = ExEyx ([Y - f(X)]*|X) (2.11)
and we see that it suffices to minimize EPE pointwise:
f(z) = argmin By x (Y - *|X =2). (2.12)

*Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y]X)Pr(X )
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly



2.4 Statistical Decision Theory 19

The solution is -
f(@) =E(Y|X =), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = z is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point z, we might ask for the average
of all those y;s with input z; = x. Since there are typically at most one
observation at any point z, we settle for

f(w) = Ave(yi|lz; € Ni(x)), (2.14)

where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k points in T closest to 2. Two approximations are happening here:

e expectation is approximated by averaging over sample data,;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to z, and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X,Y), one can show that as N,k — oo such that kE/N — 0,
f(z) - E(Y|X = z). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(x) is approximately
linear in its arguments:

f(z) =z B. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(z) into EPE (2.9) and differentiating
we can solve for § theoretically:

B = [EXXD)E(XY). (2.16)
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Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(z) is well approximated by a globally linear
function.

e k-nearest neighbors assumes f(z) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

]

FX) = (X)) (2.17)

j=1
This retains the additivity of the linear model, but each coordinate function
f; is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)? What happens if we replace the
Lo loss function with the Ly: E|Y — f(X)|? The solution in this case is the
conditional median,

f(z) = median(Y|X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L; criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G, the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,
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where L(k,£) is the price paid for classifying an observation belonging to
class Gr, as Gy. Most often we use the zero-one loss function, where all
misclassifications are charged a single unit. The expected prediction error

EPE = E[L(G, G(X))], (2.19)

where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K
EPE = Ex Y L[Gi, G(X)|Pr(Gi| X) (2.20)
k=1
and again it suffices to minimize EPE pointwise:

K
G(z) = argming g Z L(G, 9)Pr(Gr| X = z). (2.21)

k=1

With the 0-1 loss function this simplifies to

G(z) = argmin e[l — Pr(g|X = z)] (2.22)
or simply
G(X) = Gy if Pr(Gy|X = 1) = I;lea,gxPr(ng =z). (2.23)

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.

Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G4|X) if G, corresponded to Y = 1.
Likewise for a K-class problem, E(Y;|X) = Pr(G = Gi|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
F(X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4. .
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Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Ezercise 2.2).

2.5 Local Methods in High Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any
and average them. This approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction r of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e,(r) = /7. In ten dimensions e;0(0.01) =
0.63 and e10(0.1) = 0.80, while the entire range for each input is only 1.0.
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FIGURE 2.6. The curse of dimensionality is well dlustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction v of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
" the fewer observations we average, the higher is the variance of our fit.
Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
distance from the origin to the closest data point is given by the expression

aip, N) = (1- %I/N)l/ g (2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p, N') = 0.52, more than half
way to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N /P where p is the dimension of the input space and N is the
sample size. Thus if N; = 100 represents a dense sample for a single input
problem, then Njg = 100%° is the sample size required for the same sam-
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pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing examples x; generated uniformly on [—1,1]?. Assume that the true
relationship between X and Y is

Y = f(X) = SIXIF,

without any measurement error. We use the 1-nearest-neighbor rule to
predict 1o at the test-point £ = 0. Denote the training set by 7. We can
compute the expected prediction error at zo for our procedure, averaging
over all such samples of size 1000. Since the problem is deterministic, this
is the mean squared error (MSE) for estimating f(0):

MSE(zo) = Ez[f(z0) — 0]
Er(do — Ex(§0)]* + [E1 (o) — f(z0)]?
= Val‘T(Qo) + Bias2 (ﬁo) (2.25)

Il

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias-variance decomposition. Unless the nearest neighbor is at 0, g
will be smaller than f(0) in this example, and so the average estimate will
be biased downward. The variance is due to the sampling variance of the
1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more often than not, and hence the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

Y =XT8+¢, (2.26)
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1-NN in One vs. Two Dimensions
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FIGURE 2.7. A simulation ezample, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The input features are uniformly
distributed in [—1,1)? forp=1,...,10 The top left panel shows the target func-
tion (no noise) in R: f(X) = e 8I1X I” | and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
increases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-right panel shows the MSE, squared bias and

variance curves as a function of dimension p.
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FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F(X) = 3(X1 + 1)%. The
variance dominates.

where € ~ N(0,0?) and we fit the model by least squares to the train-
ing data. For an arbitrary test point xg, we have g, = xgﬁ, which can
be written as §o = x3 3 + Zfil 0;(zo)e;, where £;(zp) is the ith element
of X(XTX) 1zg. Since under this model the least squares estimates are
unbiased, we find that

EPE(z0) = EyojooEr(v0 —90)°
= Var(yo|zo) + E7[go — Exd0]” + [Exdo — Ezyo]?
= Var(yolzo) + Varz (fo) + Bias®(fo)
= 0%+ Erzl (XTX) tze0? + 02 (2.27)
Here we have incurred an additional variance o2 in the prediction error,

since our target is not deterministic. There is no bias, and the variance
depends on zg. If N is large and 7 were selected at random, and assuming

E(X) =0, then XTX — NCov(X) and

E;EPE(zg) ~ Egzd Cov(X) tago?/N + o?
trace[Cov(X) ™' Cov(zg)]o?/N + o2
o%(p/N) + o2 (2.28)

Here we see that the expected EPE increases linearly as a function of p,
with slope 02/N. If N is large and/or o2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality.
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FIGURE 2.9. The curves show the expected prediction error (at zo = 0) for
1-nearest neighbor relative to least squares for the model Y = f(X) +¢. For the
red curve, f(z) = z1, while for the green curve f(z) = iz +1)%

Figure 2.9 compares 1-nearest neighbor vs. least squares in two situa-
tions, both of which have the form Y = f(X) + ¢, X uniform as before,
and € ~ N(0,1). The sample size is N = 500. For the red curve, f(=z) is
linear in the first coordinate, for the green curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in this case, and as discussed above the EPE is slightly above o = 1.
The EPE for 1-nearest neighbor is always above 2, since the variance of
f(zo) in this case is at least 0%, and the ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could manufacture
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in 1-nearest neighbor is substantially
larger. However, if the assumptions are wrong, all bets are off and the
1-nearest neighbor may dominate. We will see that there is a whole spec-
trum of models between the rigid linear models and the extremely flexible
1-nearest-neighbor models, each with their own assumptions and biases,
which have been proposed specifically to avoid the exponential growth in
complexity of functions in high dimensions by drawing heavily on these
assumptions.

- Before we delve more deeply, let us elaborate a bit on the concept of
statistical models and see how they fit into the prediction framework.
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2.6 Statistical Models, Supervised Learning and
Function Approximation

Our goal is to find a useful approximation F(z) to the function f(z) that
underlies the predictive relationship between the inputs and outputs. In the
theoretical setting of Section 2.4, we saw that squared error loss lead us
to the regression function f(z) = E(Y|X = z) for a quantitative response.
The class of nearest-neighbor methods can be viewed as direct estimates
of this conditional expectation, but we have seen that they can fail in at
least two ways:

e if the dimension of the input space is high, the nearest neighbors need
not be close to the target point, and can result in large errors;

e if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f (z), in many cases specif-
ically designed to overcome the dimensionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

9.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

Suppose in fact that our data arose from a statistical model
Y = f(X)+e, (2.29)

where the random error & has E(¢) = 0 and is independent of X. Note that
for this model, f(z) = E(Y|X = z), and in fact the conditional distribution
Pr(Y|X) depends on X only through the conditional mean f(z).

The additive error model is a useful approximation to the truth. For
most systems the input—output pairs (X, Y) will not have a deterministic
relationship Y = f(X). Generally there will be other unmeasured variables
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures from a deterministic re-
lationship via the error €. '

For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in R?.
The training data consist of colored examples from the map {;,¢:}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the z location of the training points.
For the moment we will not pursue such problems, but will see that they
can be handled by techniques appropriate for the error-based models.

The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind
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when we average squared errors uniformly in our EPE criterion. With such
a model it becomes natural to use least squares as a data criterion for
model estimation as in (2.1). Simple modifications can be made to avoid
the independence assumption; for example, we can have Var(Y|X = z) =
o(z), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y'|X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs G; in this case the tar-
get function p(X ) is the conditional density Pr(G|X ), and this is modeled
directly. For example, for two-class data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 — p(X). Thus if Y is
the 0-1 coded version of G, then E(Y‘X = :II) = p(a;), but the variance
depends on « as well: Var(Y'|X = z) = p(z)[1 — p(z)).

2.6.2 Supervised Learning

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model Y = f(X)+¢
is a reasonable assumption. Supervised learning attempts to learn f by
example through a teacher. One observes the system under study, both
the inputs and outputs, and assembles a training set of observations T =
(zi,yi), 3 =1,...,N. The observed input values to the system z; are also
fed into an artificial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f (@;) in response to the in-
puts. The learning algorithm has the property that it can modify its in-
put/output relationship f in response to differences y; — f (z;) between the
original and generated outputs. This process is known as learning by ezam-
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be close enough to be useful for all sets of inputs likely
to be encountered in practice.

2.6.3 Function Approzimation

The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied mathe-
matics and statistics has been from the perspective of function approxima-
tion and estimation. Here the data pairs {x;,v;} are viewed as points in a
(p + 1)-dimensional Euclidean space. The function f(x) has domain equal
to the p-dimensional input subspace, and is related to the data via a model
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such as y; = f(2;) + &. For convenience in this chapter we will assume the
domain is R?, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f(x) for all z in some region of IR”, given the representations in T.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.

Many of the approximations we will encounter have associated a set of
parameters § that can be modified to suit the data at hand. For example,
the linear model f(z) = T3 has § = 3. Another class of useful approxi-
mators can be expressed as linear basis expansions

K
folz) =Y hi(z)0, (2.30)
k=1

where the hj, are a suitable set of functions or transformations of the input
vector . Traditional examples are polynomial and trigonometric expan-
sions, where for example hj might be z?, z123, cos(z1) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

1
" 14exp(—2TBk)

We can use least squares to estimate the parameters 6 in fp as we did
for the linear model, by minimizing the residual sum-of-squares

by () (2.31)

N

RSS(0) = > (i — fo(@:))? (2.32)

i=1

as a function of . This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p + 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. The noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(6).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general
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FIGURE 2.10. Least squares fitting of a function of two inputs. The parameters
of fo(z) are chosen so as to minimize the sum-of-squared vertical errors.

principle for estimation is mazimum likelihood estimation. Suppose we have
a random sample y;, i = 1,..., N from a density Pry(y) indexed by some
parameters 6. The log-probability of the observed sample is

N
L() =) logPry(y:)- (2.33)

i=1

The principle of maximum likelihood assumes that the most reasonable
values for @ are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fo(X) + ¢, with
e ~ N(0,0?), is equivalent to maximum likelihood using the conditional
likelihood

Pr(Y|X,0) = N(fo(X),0?). (2.34)

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

N 1 &
L(9) = — log(2m) — Nlogo ~ 5= 3 "y ~ fo(@:))*, (2:35)
i=1

and the only term involving 6 is the last, which is RSS(6) up to a scalar
negative multiplier. 4

A more interesting example is the multinomial likelihood for the regres-
sion function Pr(G|X) for a qualitative output G. Suppose we have a model
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Pr(G = Gk|X = x) = pro(z), k = 1,...,K for the conditional probabil-
ity of each class given X, indexed by the parameter vector §. Then the
log-likelihood (also referred to as the cross-entropy) is

N
L(6) = ZIngyi,G(xi)a (2.36)

and when maximized it delivers values of 8 that best conform with the data,
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we discuss further the need for such classes.

2.7.1 Difficulty of the Problem

Consider the RSS criterion for an arbitrary function f,
N
RSS(f) = ) (i — f(x:)). (2.37)
=1

Minimizing (2.37) leads to infinitely many solutions: any function f passing
through the training points (z;,y;) is a solution. Any particular solution
chosen might be a poor predictor at test points different from the training
points. If there are multiple observation pairs z;, ¥, £=1,..., N; at each
value of z;, the risk is limited. In this case, the solutions pass through
the average values of the y;; at each x;; see Exercise 2.5. The situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and densely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for finite NV, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometimes encoded via the parametric representation
of fp, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this
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book. One thing should be clear, though. Any restrictions imposed on f
that lead to a unique solution to (2.37) do not really remove the ambiguity
caused by the multiplicity of solutions. There are infinitely many possible
restrictions, each leading to a unique solution, so the ambiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as complezity restrictions of one kind or another. This usually
means some kind of regular behavior in small neighborhoods of the input
space. That is, for all input points z sufficiently close to each other in
some metric, f exhibits some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

The strength of the constraint is dictated by the neighborhood size. The
larger the size of the neighborhood, the stronger the constraint, and the
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraint depends on the metric used. Some methods,
such as kernel and local regression and tree-based methods, directly specify
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input o, the function does not change much, and
so close outputs can be averaged to produce f(zo). Other methods such
as splines, neural networks and basis-function methods implicitly define
neighborhoods of local behavior. In Section 5.4.1 we discuss the concept
of an equivalent kernel (see Figure 5.8 on page 133), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above—peaked at the target point and falling away smoothly
away from it.

One fact should be clear by now. Any method that attempts to pro-
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions—again the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated—and often implicit or adaptive—metric for measuring neighbor-
hoods, which basically does not allow the neighborhood to be simultane-
ously small in all directions.

2.8  Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions
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imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since detailed descriptions
are given in later chapters. Each of the classes has associated with it one
or more parameters, sometimes appropriately called smoothing parameters,
that control the effective size of the local neighborhood. Here we describe
three broad classes.

2.8.1 Roughness Penalty and Bayesian Methods

Here the class of functions is controlled by explicitly penalizing RSS(f)
with a roughness penalty

PRSS(f; \) = RSS(f) + M (f). (2.38)

The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
smoothing spline for one-dimensional inputs is the solution to the penalized
least-squares criterion

N
PRSS(f;Y) = Y (o: — £(a:))? + 2 / F@)Pde. (239)

The roughness penalty here controls large values of the second derivative
of f, and the amount of penalty is dictated by A > 0. For A = 0 no penalty
is imposed, and any interpolating function will do, while for A = co only
functions linear in = are permitted.

Penalty functionals J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J(f) = §=1 J(f;) are used in conjunction with
additive functions f(X) = Y_°_, f;(X;) to create additive models with
smooth coordinate functions. Similarly, projection pursuit regression mod-
els have f(X) = Z%ﬂ gm (ol X) for adaptively chosen directions am, and
the functions g,, can each have an associated roughness penalty.

Penalty function, or regularization methods, express our prior belief that
the type of functions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corre-
sponds to a log-prior, and PRSS(f;A) the log-posterior distribution, and
minimizing PRSS(f; \) amounts to finding the posterior mode. We discuss
roughness-penalty approaches in Chapter 5 and the Bayesian paradigm in
Chapter 8.

2.8.2 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the re-
gression function or conditional expectation by specifying the nature of the
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S nelgiiborhood, and of the class of regular functions fitted lqcally. iI‘he
haln@thhood is specified by a kernel function Kx(2o, ) which assigns
ieights to points z in a region around zo (see Figure 6.1 on page 166). ]:i‘or
example, the Gaussian kernel has a weight function based on the Gaussian

density function

1 ||z — zol?

K,\(:L‘o, :L‘) = X exp [—T (2.40)
and assigns weights to points that die exponentially with their squared
Euclidean distance from zo. The parameter ) corresponds to the variance
of the Gaussian density, and controls the width of the neighborhood. The
simplest form of kernel estimate is the Nadaraya—Watson weighted average

Siy Ka(@o, zi)ui (2.41)
Siy Ka(o, i)

In general we can define a local regression estimate of f(zo) as fy(xo),
Where 6 minimizes

f(@o) =

N
RSS(fe, o) = ZK,\(aco, z:)(yi — fo(xi))?, (2.42)

i=1
and fy is some parameterized function, such as a low-order polynomial.
Some examples are:
e fo(z) = 6, the constant function; this results in the Nadaraya-
Watson estimate in (2.41) above.
o fo(z) = 6p + 01z gives the popular local linear regression model.

Nearest-neighbor methods can be thought of as kernel methods having a
more data-dependent metric. Indeed, the metric for k-nearest neighbors is

Kx(z,z0) = I(||z — @ol| < [l&(x) — zol]);

where z (i) is the training observation ranked kth in distance from zg, and
I(S) is the indicator of the set S.

These methods of course need to be modified in high dimensions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.3 Basis Functions and Dictionary Methods

This class of methods include the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f is a linear expansion of basis functions

M
fo(@) =Y Omhm(), (2.43)
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where each of the h,, is a function of the input x, and the term linear here
refers to the action of the parameters 6. This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in z of total degree M.

For one-dimensional z, polynomial splines of degree K can be represented
by an appropriate sequence of M spline basis functions, determined in turn
by M — K knots. These produce functions that are piecewise polynomials
of degree K between the knots, and joined up with continuity of degree
K — 1 at the knots. As an example consider linear splines, or piecewise
linear functions. One intuitively satisfying basis consists of the functions
bi(z) = 1, ba(z) = =, and bmi2(z) = ( —tm)y, m = 1,..., M =2,
where t,, is the mth knot, and z; denotes positive part. Tensor products
of spline bases can be used for inputs with dimensions larger than one
(see Section 5.2, and the CART and MARS models in Chapter 9.) The
parameter 6 can be the total degree of the polynomial or the number of
knots in the case of splines.

Radial basis functions are symmetric p-dimensional kernels located at
particular centroids,

M
fo(@) =Y K (pims 7)0rm; (2.44)

for example, the Gaussian kernel K)(u,z) = e~ llo—nll?/2x jg popular.

Radial basis functions have centroids u,, and scales A, that have to
be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. Including these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice, shortcuts such as greedy
algorithms or two stage processes are used. Section 6.7 describes some such
approaches.

A single-layer feed-forward neural network model with linear output
weights can be thought of as an adaptive basis function method. The model
has the form

M
fo(@) = Bmo(ahz +bm), (2.45)

m=1

where o(z) = 1/(1 + e ®) is known as the activation function. Here, as
in the projection pursuit model, the directions a., and the bias terms by,
have to be determined, and their estimation is the meat of the computation.
Details are give in Chapter 11.

These adaptively chosen basis function methods are also known as dictio-
nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.
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29 Model Selection and the Bias—Variance
Tradeoft

All the models described above and many others discussed in later chapters
have a smoothing or complexity parameter that has to be determined:

e the multiplier of the penalty term;
e the width of the kernel;
e or the number of basis functions.

In the case of the smoothing spline, the parameter ) indexes models ranging
from a straight line fit to the interpolating model. Similarly a local degree-
m polynomial model ranges between a degree-m global polynomial when
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. This means that we cannot use residual sum-of-squares
on the training data to determine these parameters as well, since we would
always pick those that gave interpolating fits and hence zero residuals. Such
a model is unlikely to predict future data well at all.

The k-nearest-neighbor regression fit fx(xo) usefully illustrates the com-
peting forces that effect the predictive ability of such approximations. Sup-
pose the data arise from a model Y = f (X) + ¢, with E(¢) = 0 and
Var(e) = o2. For simplicity here we assume that the values of z; in the
sample are fixed in advance (nonrandom). The expected prediction error
at zo, also known as test or generalization error, can be decomposed:

EPEx(z0) = E[(Y — fu(20))*|X = o]
o? + [Bias®(fi(zo)) + Varr(fi(zo))] (246

k 9 0_2
o+ [fleo) ~ 1 S f@w)] + T @47
=1

I

The subscripts in parentheses (£) indicate the sequence of nearest neighbors
to zo.

There are three terms in this expression. The first term o2 is the ir-
reducible erro—the variance of the new test target— and is beyond our
control, even if we know the true f(xo).

- The second and third terms are under our control, and make up the
mean squared error of fi(zo) in estimating f(zo), which is broken down
into a bias component and a variance component. The bias term is the
squared difference between the true mean f(z) and the expected value of
the estimate—[E(fx(zo)) — f(20)]>—where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k£ the few closest
neighbors will have values f(z(g) close to f(xo), so their average should
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FIGURE 2.11. Test and training error as a function of model complezity.

be close to f(zo). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias—variance tradeoff.

More generally, as the model complezity of our procedure is increased,
the variance tends to increase and the squared bias tends to decreases.
The opposite behavior occurs as the model complexity is decreased. For
k-nearest neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error & " (y; — 9;)?. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f (zo) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.
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Exercises

Ex. 2.1 Suppose each of K-classes has an associated target ¢, which is a
vector of all zeros, except a one in the kth position. Show that classifying to
the largest element of § amounts to choosing the closest target, ming ||¢x —
gl|, if the elements of § sum to one.

Ex. 2.2 Show how to compute the Bayes decision boundary for the simula-
tion example in Figure 2.5.

Ex. 2.3 Derive equation (2.24).

Ex. 2.4 The edge effect problem discussed on page 23 is not peculiar to
uniform sampling from bounded domains. Consider inputs drawn from a
spherical multinormal distribution X ~ N(0,1,). The squared distance
from any sample point to the origin has a X,% distribution with mean p.
Consider a prediction point zo drawn from this distribution, and let a =
20/||zo]| be an associated unit vector. Let z; = a”x; be the projection of
each of the training points on this direction.

(a) Show that the z; are distributed N(0,1) with expected squared dis-
tance from the origin 1, while the target point has expected squared
distance p from the origin.

(b) For p = 10 show that the expected distance of a test point from the
center of the training data is 3.1 standard deviations, while all the
training points have expected distance 1 along direction a. So most
prediction points see themselves as lying on the edge of the training
set.

Ex. 2.5 Consider a regression problem with inputs x; and outputs y;, and a
parameterized model fg(z) to be fit by least squares. Show that if there are
observations with tied or identical values of z, then the fit can be obtained
from a reduced weighted least squares problem.

Ex. 2.6 Suppose we have a sample of N pairs z;,y; drawn i.i.d. from the
distribution characterized as follows:

z; ~ h(z), the design density

¥i = f(x;) + &4, f is the regression function

g; ~ (0,0°) (mean zero, variance ?)
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We construct an estimator for f linear in the y;,

N

Flzo) = Zfi(ﬁvos X)yi,

=1

where the weights £;(xp; X') do not depend on the y;, but do depend on the
entire training sequence of z;, denoted here by X.

(a) Show that linear regression and k-nearest-neighbor regression are mem-
bers of this class of estimators. Describe explicitly the weights ¢;(zo; X)
for both these cases.

(b) Decompose the conditional mean-squared error

Eyjx(f(@0) — f(z0))?

into a conditional squared bias and a conditional variance component.
Like X, ) represents the entire training sequence of y;.

(c) Decompose the (unconditional) mean-squared error

Ey x(f(z0) - f(20))?
into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in
the above two cases.

Ex. 2.7 Compare the classification performance of linear regression and k-
nearest neighbor classification on the zipcode data. In particular, consider
only the 2’s and 3’s, and k = 1,3,5,7 and 15. Show both the training and
test error for each choice. The zipcode data are available from the book
website www-stat.stanford.edu/ElemStatLearn.
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Linear Methods for Regression

3.1 Introduction

A linear regression model assumes that the regression function E(Y'|X) is
linear in the inputs Xj,...,Xp. Linear models were largely developed in
the precomputer age of statistics, but even in today’s computer era there
are still good reasons to study and use them. They are simple and often
provide an adequate and interpretable description of how the inputs affect
the output. For prediction purposes they can sometimes outperform fancier
nonlinear models, especially in situations with small numbers of training
cases, low signal-to-noise ratio or sparse data. Finally, linear methods can be
applied to transformations of the inputs and this considerably expands their
scope. These generalizations are sometimes called basis-function methods,
and are discussed in Chapter 5.

In this chapter we describe linear methods for regression, while in the
next chapter we discuss linear methods for classification. On some topics we
go into considerable detail, as it is our firm belief that an understanding
of linear methods is essential for understanding nonlinear ones. In fact,

many nonlinear techniques are direct generalizations of the linear methods
discussed here.
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3.2 Linear Regression Models and Least Squares

As introduced in Chapter 2, we have a vector of inputs X = (X1, Xo, ..., X)),
and want to predict a real-valued output Y. The linear regression model
has the form

FX) =60+ X, (3.1)

=1

The linear model either assumes that the regression function E(Y|X) is
linear, or that the linear model is a reasonable approximation. Here the
B;’s are unknown parameters or coefficients, and the variables X can come
from different sources:

e quantitative inputs;

o transformations of quantitative inputs, such as log, square-root or
square;

o basis expansions, such as Xo = X7, X3 = X3, leading to a polynomial
representation;

¢ numeric or “dummy” coding of the levels of qualitative inputs. For
example, if G is a five-level factor input, we might create X;, j =
1,...,5, such that X; = I(G = j). Together this group of X; rep-
resents the effect of G by a set of level-dependent constants, since in
Z?:l X;B;, one of the Xs is one, and the others are zero.

e interactions between variables, for example, X3 = X - X,.

No matter the source of the X;, the model is linear in the parameters.

Typically we have a set of training data (z1,41) ... (zx,yn) from which
to estimate the parameters 8. Each z; = (w1, %i2,... ,2:)7 is a vector
of feature measurements for the ith case. The most popular estimation
method is least squares, in which we pick the coefficients 3 = (6o, 81, ... , Bp)7
to minimize the residual sum of squares

N
RSS(8) = Z(yi — f(x:))?
11_\71 14 2
= Z(yz —Bo — sz‘jﬂj) - (3.2)
i=1 j=1

From a statistical point of view, this criterion is reasonable if the training
observations (z;,y;) represent independent random draws from their popu-
lation. Even if the z;’s were not drawn randomly, the criterion is still valid
if the 7;’s are conditionally independent given the inputs z;. Figure 3.1
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X1

FIGURE 3.1. Linear least squares fitting with X € R2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

illustrates the geometry of least-squares fitting in the IRP*! dimensional
space occupied by the pairs (X, Y). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N x (p + 1) matrix with
cach row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(8) = (y — XB)" (y — XB). (3:3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to 3 we obtain

O — Xy - X
ORSS . ry (34
popT '

Assuming (for the moment) that X has full column rank, and hence XTX
is positive definite, we set the first derivative to zero

XT(y —XB) =0 (3.5)
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y

X1

FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection § represents the vector
of the least squares predictions

to obtain the unique solution
B=XTX)XTy. (3.6)

The predicted values at an input vector z are given by f (o) =(1: a:g’)ﬂA;
the fitted values at the training inputs are

y =XB=XX"X)'XTy, (3.7)
where §; = f(z;). The matrix H = X(XTX)~1X7 appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the the least
squares estimate, this time in IR". We denote the column vectors of X by
X0,X1,. .. ,Xp, With X9 = 1. For much of what follows, this first column is
treated like any other. These vectors span a subspace of R”, also referred to
as the column space of X. We minimize RSS(8) = ||y — X0||? by choosing
,3 so that the residual vector y — y is orthogonal to this subspace. This
orthogonality is expressed in (3.5), and the resulting estimate ¥ is hence the
orthogonal projection of y onto this subspace. The hat matrix H computes
the orthogonal projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x, = 3x;). Then XX is singular
and the least squares coefficients ,5’ are not uniquely defined. However,
the fitted values § = X3 are still the projection of y onto the column
space of X; there is just more than one way to express that projection in
terms of the column vectors of X. The nonfull rank case occurs most often
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" when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement
some strategy for removing them. Rank deficiencies can also occur in signal
and image analysis, where the number of inputs p can exceed the number of
training cases N. In this case, the features are typically reduced by filtering
or else the fitting is controlled by regularization (Section 5.2.3).

Up to now we have made minimal assumptions about the true distribu-
tion of the data. In order to pin down the sampling properties of 3, we now
assume that the observations y; are uncorrelated and have constant vari-
ance o2, and that the z; are fixed (non random). The variance—covariance
matrix of the least squares parameter estimates is easily derived from (3.6)

and is given by
Var(B) = (X"X) 0% (3.8)

Typically one estimates the variance o® by

1 N
AZ_____E 52
a ~~N_p_]‘z:l(y'l« yl) *

The N — p — 1 rather than N in the denominator makes 62 an unbiased
estimate of 02: E(6%) = 02.

To draw inferences about the parameters and the model, additional as-
sumptions are needed. We now assume that (3.1) is the correct model for
the mean; that is, the conditional expectation of Y is linear in X3, ... , Xp.
We also assume that the deviations of Y around its expectation are additive

and Gaussian. Hence

Y

I

E(Yle, .. ,Xp) +e

P
= fo +ZXjﬂj +¢, (3.9)

et
where the error ¢ is a Gaussian random variable with expectation zero and

variance o2, written £ ~ N(0, 0?).
Under (3.9), it is easy to show that

B~ N(B,(XTX)10?). (3.10)

This is a multivariate normal distribution with mean vector and variance—
covariance matrix as shown. Also

(N-p-1)8% ~o*x%_,_1, (3.11)
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FIGURE 3.3. The tail probabilities Pr(|Z| > z) for three distributions, tso, t100
and standard normal. Shown are the appropriate quantiles for testing significance
at the p = 0.05 and 0.01 levels. The difference between t and the standard normal
becomes negligible for N bigger than about 100.

a chi-squared distribution with N —p— 1 degrees of freedom. In addition /3
and 62 are statistically independent. We use these distributional properties
to form tests of hypothesis and confidence intervals for the parameters Bj-

To test the hypothesis that a particular coefficient 8; = 0, we form the
standardized coefficient or Z-score

~

Bi
6,/0;
where v; is the jth diagonal element of (XTX)~!. Under the null hypothesis
that 8; = 0, z; is distributed as ty_p—1 (a t distribution with N —p — 1
degrees of freedom), and hence a large (absolute) value of z; will lead to
rejection of this null hypothesis. If ¢ were known, then z; would have a
standard normal distribution. The difference between the tail quantiles of
a t-distribution and a standard normal become negligible as the sample size
increases, and so we typically use the normal quantiles (see Figure 3.3).

Often we need to test for the significance of groups of coefficients simul-
taneously. For example, to test if a categorical variable with k& levels can
be excluded from a model, we need to test whether the coefficients of the
dummy variables used to represent the levels can all be set to zero. Here
we use the F' statistic,

z = (3.12)

_ (RSSo —RSS;)/(p1 — po)
- RSS/(N—-p1 —1)

where RSS; is the residual sum-of-squares for the least squares fit of the big-
ger model with p; +1 parameters, and RSSy the same for the nested smaller

(3.13)
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ssodel with po + 1 parameters, having p1 —po para:meters constrained to be
gero. The F statistic measures the change in resx.dual sum.-of-squa,res per
additional parameter in the bigger model, and it is normalized by an esti-
mate of o2. Under the Gaussian assumptions, and the null hypothesis that
the smaller model is correct, the F' statistic will have a Fp, _p; N—p,—1 dis-
tribution. It can be shown (Exercise 3.1) that the z; in (3.12) are equivalent
to the F statistic for dropping the single coefficient 3; from the model. For
large N, the quantiles of the Fp, _p,,N—p,—1 approach those of the Xzzn—pw

Similarly, we can isolate 3; in (3.10) to obtain a 1—2a confidence interval

for B;:
. 1
(B; — 2026, B+ 2070} 4). (3.14)
Here 2(1=9) is the 1 — o percentile of the normal distribution:

z(1—0.025) = 1.96,
2(1-08) = 1645, etc.

Hence the standard practice of reporting B+2- se(ﬁ) amounts to an ap-
proximate 95% confidence interval. Even if the Gaussian error assumption
does not hold, this interval will be approximately correct, with its coverage
-approaching 1 — 2o as the sample size N — oo.

In a similar fashion we can obtain an approximate confidence set for the
entire parameter vector 3, namely

. . . 1-
Cp={BI(B-BTXTX(B - B) <62}, (3.15)

where x%(l_a) is the 1 — a percentile of the chi-squared distribution on ¢

degrees of freedom: for example, x§(1—0"05) = 11.1, Xg(l—o’l) = 9.2. This

confidence set for § generates a corresponding confidence interval for the
true function f(z) = 278, namely {z73|8 € Cs} (Exercise 3.2). For an
example of such confidence intervals, see Figure 5.4 in Section 5.2.2.

3.2.1 Fzxample: Prostate Cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (1cavol), log prostate
weight (1lweight), age, log of the amount of benign prostatic hyperplasia
(1bph), seminal vesicle invasion (svi), log of capsular penetration (1cp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pggd5).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a



48 3. Linear Methods for Regression

TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol 1lweight age 1lbph svi lcp gleason

lweight  0.300

age  0.286 0.317

lbph  0.063 0.437 0.287

svi  0.593 0.181 0.129 -0.139

lcp  0.692 0.157 0.173 -0.089 0.671
gleason  0.426 0.024 0.366 0.033 0.307 0.476

pggd5  0.483 0.074 0.276 -0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than two
in absolute value is significantly nonzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score

Intercept 2.48 0.09 27.66
lcavol 0.68 0.13 5.37
lweight 0.30 0.11 2.75
age -0.14 0.10 -1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lcp -0.29 0.15 -1.87
gleason -0.02 0.15 -0.15

pegis 0.27 0.15 1.74

binary variable, and gleason is an ordered categorical variable. We see, for
example, that both lcavol and 1lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostate-specific antigen, 1psa, after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 67 and a test set of size 30. We ap-
plied least squares estimation to the training set, producing the estimates,
standard errors and Z-scores shown in Table 3.2. The Z-scores are defined
in (3.12), and measure the effect of dropping that variable from the model.
A Z-score greater than 2 in absolute value is approximately significant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the tg7_g distribution are +2.002!) The predictor 1cavol shows
the strongest effect, with lweight and svi also strong. Notice that lcp is
not significant, once 1cavol is in the model (when used in a model without
lcavol, lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F-statistic (3.13). For example, we
consider dropping all the non-significant terms in Table 3.2, namely age,
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. ﬁ;&g&e&s@n, and pgg45. We get

bk (32.81 — 29.43)/(9 — 5)
| _ 82 = 1.67, 3.16
F=—3523/(67-9) (3.16)

which has a p-value of 0.17 (Pr(Fyzs > 1.67) = 0.17), and hence is not
significant.

The mean prediction error on the test data is 0.545. In contrast, predic-
tion using the mean training value of 1psa has a test error of 1.050, which
is called the “base error rate.” Hence the linear model reduces the base
error rate by about 50%. We will return to this example later to compare
various selection and shrinkage methods.

9.9.2 The Gauss—Markov Theorem

One of the most famous results in statistics asserts that the least squares
estimates of the parameters 3 have the smallest variance among all linear
unbiased estimates. We will make this precise here, and also make clear
that the restriction to unbiased estimates is not necessarily a wise one. This
observation will lead us to consider biased estimates such as ridge regression
later in the chapter. We focus on estimation of any linear combination of
the parameters § = a” §3; for example, predictions f (zo) = z B are of this
form. The least squares estimate of a” 3 is

6=aT8=a"(XTX)"XTy. (3.17)

Considering X to be fixed, this is a linear function cl'y of the response
vector y. If we assume that the linear model is correct, oT 3 is unbiased
since

E(eT(XTX)1XTy)
oT(XTX)1XTXp
a’B. (3.18)

E(a”p)

The Gauss-Markov theorem states that if we have any other linear estima-
tor @ = cT'y that is unbiased for a” 8, that is, E(c’y) = a” 3, then

Var(aT 3) < Var(cTy). (3.19)

The proof (Exercise 3.3) uses the triangle inequality. For simplicity we have
stated the result in terms of estimation of a single parameter o™ 3, but with
a few more definitions one can state it in terms of the entire parameter
vector 8 (Exercise 3.3).

Consider the mean squared error of an estimator 6 in estimating 6:

MSE@) = E(f-0)?
= Var(d) + [E(d) — 6)>. (3.20)
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The first term is the variance, while the second term is the squared bias.
The Gauss-Markov theorem implies that the least squares estimator has the
smallest mean squared error of all linear estimators with no bias. However,
there may well exist a biased estimator with smaller mean squared error.
Such an estimator would trade a little bias for a larger reduction in variance.
Biased estimates are commonly used. Any method that shrinks or sets to
zero some of the least squares coefficients may result in a biased estimate.
We discuss many examples, including variable subset selection and ridge
regression, later in this chapter. From a more pragmatic point of view, most
models are distortions of the truth, and hence are biased; picking the right
model amounts to creating the right balance between bias and variance.
We go into these issues in more detail in Chapter 7.

Mean squared error is intimately related to prediction accuracy, as dis-
cussed in Chapter 2. Consider the prediction of the new response at input
Zo,

Yo = f((l?o) + €p- (321)
Then the expected prediction error of an estimate f (z0) = ng is

E(Yo - f(20))* = o +E(xf B — f(x0))’
o + MSE(f(z0)). (3.22)

I

Therefore, expected prediction error and mean squared error differ only by
the constant o2, representing the variance of the new observation ypo.

3.3 Multiple Regression from Simple Univariate
Regression

The linear model (3.1) with p > 1 inputs is called the multiple linear
regression model. The least squares estimates (3.6) for this model are best
understood in terms of the estimates for the univariate (p = 1) linear
model, as we indicate in this section.

Suppose first that we have a univariate model with no intercept, that is,

Y=Xf3+e. (3.23)

The least squares estimate and residuals are

B _ 211\{ ZiYi
N2’ (3.24)

i =Yi - z;3.
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--In convenient vector notation, welety = (y1,... yn)T,x = (z1,...,28)T
and define
N
(X, Y> = Z TilYi,
=1
= xTy,
the inner product between x and y.* Then we can write
A _ <X, y)
:6 - )
(x,x) (3.25)
r=y-— x.

As we will see, this simple univariate regression provides the building
block for multiple least squares regression. Suppose next that the inputs
X1,X2,... ,Xp (the columns of the data matrix X) are orthogonal; that is
(x;,xx) = 0 for all j # k. Then it is easy to check that the multiple least
squares estimates 3; are equal to (x;, y)/(x;, x;)—the univariate estimates.
In other words, when the inputs are orthogonal, they have no effect on each
others parameter estimates in the model.

Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational
data. Hence we will have to orthogonalize them in order to carry this idea
further. Suppose next that we have an intercept and a single input x. Then
the least squares coefficient of x has the form

Bl — (X _ El? y>

(x —z1,x — z1)’ (3.26)

where Z = ). x;/N, and 1 = xo, the vector of N ones. We can view the
estimate (3.26) as the result of two applications of the simple regression
(3.25). The steps are:

1. regress x on 1 to produce the residual z = x — 71;

2. regress y on the residual z to give the coefficient f3;.

In this procedure, “regress b on a” means a simple univariate regression of b
on a with no intercept, producing coefficient 4 = (a, b)/(a,a) and residual
vector b —4a. We say that b is adjusted for a, or is “orthogonalized” with
respect to a.

Step 1 orthogonalizes x with respect to xo = 1. Step 2 is just a simple
univariate regression, using the orthogonal predictors 1 and z. Figure 3.4
shows this process for two general inputs x; and x,. The orthogonalization
does not change the subspace spanned by x; and xa, it simply produces an
orthogonal basis for representing it.

" *The inner-product notation is suggestive of generalizations of linear regression to
different. metric spaces, as well as to probability spaces.
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FIGURE 3.4. Least squares regression by orthogonalization of the iputs. The
vector Xz is regressed on the vector x1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of xa. Adding together the
projections of y on each of x1 and z gives the least squares fit §.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize zg = xg = 1.
2. Forj=12...,p

Regress x; on zg,2zi1,...,,2z;_1 to produce coefficients Yej =
(z0,%;)/(20,24), £ = 0,...,7 — 1 and residual vector z; =

J—=1 4
X5 — Zk:o VkjZk—1-

3. Regress y on the residual z, to give the estimate Bp.

This recipe generalizes to the case of p inputs, as shown in Algorithm 3.1.
Note that the inputs 2o, ... ,z;_; in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regres-
sion coefficients.

The result of this algorithm is

_ <Zp7 y)
(2p,2p)

(3.27)

p

Re-arranging the residual in step 2, we can see that each of the X; is a linear
combination of the zx, k < j. Since the z; are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is §. Since x,, alone involves z, (with coefficient, 1), we
see that the coefficient (3.27) is indeed the multiple regression coefficient of
y on x,,. This key result exposes the effect of correlated inputs in multiple
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regression. Note also that by rearranging the x;, any one of them could
be in the last position, and a similar results holds. Hence stated more
generally, we have shown that the jth multiple regression coefficient is the
univariate regression coefficient of y on X;.012...(j—1)(j+1)... ,p» the residual
after Tegressing X; on Xo, X1, ..., X;j—1,Xj41, - - - , Xpt

The multiple regression coefficient Bj represents the additional
contribution of x; on'y, after X; has been adjusted for xo,X1,... ,X;-1,

Xj+1, ‘e ,Xp.
If x,, is highly correlated with some of the other x;’s, the residual vector
z, will be close to zero, and from (3.27) the coeflicient (3, will be very

unstable. This will be true for all the variables in the correlated set. From
(3.27) we also obtain an alternate formula for the variance estimates (3.8),

o? a?

Var(B,) = ——— = —— (3.28)

(Zp,Zp) Hzp”Q.

In other words, the precision with which we can estimate Bp depends on
the length of the vector zy; this represents how much of x; is unexplained
by the other x’s.

Algorithm 3.1 is known as the Gram-Schmidt procedure for multiple
regression, and is also a useful numerical strategy for computing the esti-
mates. We can obtain from it not just B, but also the entire multiple least
squares fit, as shown in Exercise 3.4.

We can represent step 2 of Algorithm 3.1 in matrix form:

X = 17T, (3.29)

where Z has as columns the z; (in order), and I is the upper triangular ma-
trix with entries 4x;. Introducing the diagonal matrix D with jth diagonal
entry D;; = ||z;{|, we get

X = ZD'Dr
QR, (3.30)

the so-called QR decomposition of X. Here Q is an N X (p+ 1) orthogonal
matrix, QTQ =1, and R is a (p+ 1) x (p + 1) upper triangular matrix.

The QR decomposition represents a convenient orthogonal basis for the
column space of X. It is easy to see, for example, that the least squares
solution is given by

g = RQTy, (3.31)
y = QQTy. (3.32)

Equation (3.31) is easy to solve because R is upper triangular (Exer-
cise 3.4).
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3.3.1  Multiple Outputs
Suppose we have multiple outputs Y;, Y, ... , Yi that we wish to predict

from our inputs Xg, X1, Xo, ... , Xp. We assume a linear model for each
output
P
Yi = Bok+ Y XiBjn+ex (3.33)
j=1
= JulX) +en. (3.34)

With NV training cases we can write the model in matrix notation
Y =XB+E. (3.35)

Here Y is the N x K response matrix, with ik entry y;;,, X is the N x (p+1)
input matrix, B is the (p + 1) x K matrix of parameters and E is the
N x K matrix of errors. A straightforward generalization of the univariate
loss function (3.2) is

K
RSS(B) = D ) (v — fu(z:) (3.36)
k=1 1=1
= tr(Y - XB)"(Y - XB)]. (3.37)

The least squares estimates have exactly the same form as before
B=X"X)"'xTY. (3.38)

Hence the coefficients for the kth outcome are just the least squares esti-
mates in the regression of y; on x,x1,...,%,. Multiple outputs do not
affect one another’s least squares estimates.

If the errors € = (e1,... ,ex) in (3.33) are correlated, then it might seem
appropriate to modify (3. 36) in favor of a multivariate version. Specifically,
suppose Cov(e) = X, then the multivariate weighted criterion

2

RSS(B; ) = (ui — f(2:)"S  (ys — f(x)) (3.39)

=1

arises naturally from multivariate Gaussian theory. Here f(z) is the vector
function (fi(z),..., fx(z)), and y; the vector of K responses for observa-
tion 7. However, it can be shown that again the solution is given by (3.38);
K separate regressions that ignore the correlations (Exercise 3.9). If the %;
vary among observations, then this is no longer the case, and the solution
for B no longer decouples.

In Section 3.4.6 we pursue the multiple outcome problem, and consider
situations where it does pay to combine the regressions.
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3.4 Subset Selection and Coefficient Shrinkage

There are two reasons why we are often not satisfied with the least squares
estimates (3.6).

o The first is prediction accuracy: the least squares estimates often have
Jow bias but large variance. Prediction accuracy can sometimes be
improved by shrinking or setting some coefficients to zero. By doing
so we sacrifice a little bit of bias to reduce the variance of the predicted
values, and hence may improve the overall prediction accuracy.

e The second reason is interpretation. With a large number of predic-
tors, we often would like to determine a smaller subset that exhibit
the strongest effects. In order to get the “big picture,” we are willing
to sacrifice some of the small details.

In this section we describe a number of approaches to variable selection
and coefficient shrinkage.

3.4.1 Subset Selection

In this approach we retain only a subset of the variables, and eliminate
the rest from the model. Least squares regression is used to estimate the
coefficients of the inputs that are retained. There are a number of different
strategies for choosing the subset. Best subset regression finds for each
k € {0,1,2,...,p} the subset of size k that gives smallest residual sum
of squares (3.2). An efficient algorithm—the leaps and bounds procedure
(Furnival and Wilson, 1974)—makes this feasible for p as large as 30 or
40. Figure 3.5 shows all the subset models for the prostate cancer example.
The lower boundary represents the models that are eligible for selection by
the best-subsets approach. Note that the best subset of size 2, for example,
need not include the variable that was in the best subset of size 1 (for
this example all the subsets are nested). The best-subset curve (red lower
boundary in Figure 3.5) is necessarily decreasing, so cannot be used to
select the subset size k. The question of how to choose k involves the
tradeoff between bias and variance, and there are a number of criteria that
one may use. Typically we choose the model that minimizes an estimate of
the expected prediction error. We defer discussion of this until Chapter 7.

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. Forward
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. Suppose our current
model has k inputs, represented by parameter estimates 3, and we add in
a predictor, resulting in estimates (3. The improvement in fit is often based
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

on the I statistic (3.13),

__RSS(3) —RSS()
~ RSS(B)/(N —k-2)

A typical strategy adds in sequentially the predictor producing the largest
value of F', stopping when no predictor produces an F-ratio greater than
the 90th or 95th percentile of the Fi, N_k—2 distribution.

Backward stepwise selection starts with the full model, and sequentially
deletes predictors. Like forward selection, it typically uses an F-ratio like
(3.40) to choose the predictor to delete. In this case we drop the predic-
tor producing the smallest value of F' at each stage, stopping when each
predictor in the model produces a value of F' greater than the 90th or
95th percentile when dropped. Backward selection can only be used when
N > p, while forward stepwise can always be used. There are also hy-
brid stepwise selection strategies that consider both forward and backward
moves at each stage, and make the “best” move; these require a parameter
to set the threshold between when an “add” move is chosen over a “drop”
move.

The F-ratio stopping rule provides only local control of the model search,
and does not attempt to find the best model along the sequence of models
that it examines. As with all-subsets selection, we can choose the model
from the sequence that minimizes an estimate of expected prediction error.
This is discussed in Chapter 7, and illustrated in the example below.

(3.40)
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TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond

to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS

Tntercept  2.480 2.495 2467 2477 2513  2.452
lcavol  0.680 0.740 0.389 0.545 0.544  0.440
lweight  0.305 0.367 0.238 0.237 0.337 0.351
age -0.141 -0.029 -0.152 -0.017

ibph  0.210 0.159 0.098 0.213 0.248

svi 0.305 0.217 0.165 0.315  0.252

lcp -0.288 0.026 -0.053  0.078
gleason -0.021 0.042 0.230  0.003
pgeas  0.267 0.123 0.059 -0.053  0.080
Test Error  0.586 0.574 0.540 0.491 0.527 0.636
Std. Error  0.184 0.156 0.168 0.152 0.122 0.172

3.4.2 Prostate Cancer Data Ezample ( Continued)

Table 3.3 shows the coefficients from a number of different selection and
shrinkage methods. They are best-subset selection using an all-subsets search,
ridge regression, the lasso, principal components regression and partial least
squares. Each method has a complexity parameter, and this was chosen to
minimize an estimate of prediction error based on tenfold cross-validation;
full details are given in Section 7.10. Briefly, cross-validation works by divid-
ing the training data randomly into ten equal parts. The learning method
is fit to nine-tenths of the data, and the prediction error is computed on
the remaining one-tenth. This is done in turn for each one-tenth of the
data, and the ten prediction error estimates are averaged. Note that we
have already divided these data into a training set of size 67 and a test set
of size 30. Cross-validation is applied to the training set, since selecting the
shrinkage parameter is part of the training process. The test set is there to
judge the performance of the selected model.

The estimated prediction error curves are shown in Figure 3.6. Many of
the curves are very flat over large ranges near their minimum. Included
are estimated standard error bands for each estimated error rate, based on
the ten error estimates computed by cross-validation. We have used the
“one-standard-error” rule—we pick the most parsimonious model within
one standard error of the minimum (Section 7.10, page 216). Such a rule
faces up to the fact that the tradeoff curve is estimated with error, and
hence takes a conservative approach.

Best-subset selection chose to use the two predictors lcvol and lcweight.
The last two lines of the table give the average prediction error (and its
standard error) over the test set.
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FIGURE 3.6. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complezity parameter for that method. The horizontal azis
has been chosen so that the model complezity increases as we move from left to
right. The prediction error estimates and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
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model within one standard error of the best is chosen.
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3.4.3 Shrinkage Methods

By retaining & subset of the predictors and discarding the rest, subset selec-
tion produces & model that is interpretable and has possibly lower predic-
tion error than the full model. However, because it is a discrete process—
variables are either retained or discarded—it often exhibits high variance,
and so doesn’t reduce the prediction error of the full model. Shrinkage
methods are more continuous, and don’t suffer as much from high variabil-

ity.
Ridge Regression
Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The ridge coefficients minimize a penalized residual sum of
squares,

N

P p
fridee = arg;nin{Z(yi —Bo— Z xijﬂj)z + Azﬁf’}‘ (3-41)
j=1 Jj=1

i=1

Here )\ > 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of A, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

N p 2
,Bndge = arg;ninZ(yi - ﬂo - Z Z‘i]ﬂj) s
=1 j=1

p
subject to Zﬁf <s,
=1

(3.42)

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters A in (3.41) and s in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a sim-
ilarly large negative coefficient on its correlated cousin. By imposing a size
constraint on the coefficients, as in (3.42), this phenomenon is prevented
from occurring.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41).

In addition, notice that the intercept o has been left out of the penalty
term. Penalization of the intercept would make the procedure depend on
the origin chosen for Y; that is, adding a constant c to each of the targets y;
would not simply result in a shift of the predictions by the same amount c.
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It can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each z;; gets
replaced by z;; — Z;. We estimate By by § = Zf’ yi/N. The remaining
coefficients get estimated by a ridge regression without intercept, using the
centered z;;. Henceforth we assume that this centering has been done, so '
that the input matrix X has p (rather than p + 1) columns.

Writing the criterion in (3.41) in matrix form,

RSS(N) = (y — XB)" (y — XB) + A7, (3.43)
the ridge regression solutions are easily seen to be
prdse — (XTX + A1) 71Xy, (3.44)

where I is the p X p identity matrix. Notice that with the choice of quadratic
penalty 873, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of XTX before
inversion. This makes the problem nonsingular, even if X7X is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.7 shows the ridge coefficient estimates for the prostate cancer
example, plotted as functions of df()), the effective degrees of freedom im-
plied by a penalty A (defined in (3.50) on page 63).

In the case of orthogonal inputs, the ridge estimates are just a scaled
version of the least squares estimates, that is, 3798¢ = 4. Here 0 < v<1
is a simple function of A in equation (3.41); see Section 3.4.5.

Ridge regression can also be derived as the mean or mode of a poste-
rior distribution, with a suitably chosen prior distribution. Suppose Yy ~
N(Bo + x]3,0%), and the parameters f3; are each distributed as N (0,72),
independently of one another. Then the (negative) log-posterior density
of B, with 72 and o2 assumed known, is equal to the expression in curly
braces in (3.41), with A = 0% /72 (Exercise 3.6). Thus the ridge estimate is
the mode of the posterior distribution; since the distribution is Gaussian,
it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
composition is extremely useful in the analysis of many statistical methods.
The SVD of the N x p matrix X has the form

X =UDVT, (3.45)

Here U and V are N X p and p x p orthogonal matrices, with the columns
of U spanning the column space of X, and the columns of V spanning the
row space. D is a p x p diagonal matrix, with diagonal entries d; > dy >
-+« > dp > 0 called the singular values of X.
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FIGURE 3.7. Profiles of ridge coefficients for the prostate cancer example, as
tuning parameter A is varied. Coefficients are plotted versus df(\), the effective

degrees of freedom. A wvertical line is drawn at df = 4.16, the value chosen by
cross-validation.
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Using the singular value decomposition we can write the least squares
fitted vector as

XBIS — X(XTX)—IXTy
= UUTy, (3.46)

after some simplification. Note that UTy are the coordinates of y with

respect to the orthonormal basis U. Note also the similarity with (3.32); Q

and U are generally different bases for the column space of X (Exercise 3.8).
Now the ridge solutions are

Xpide = X(XTX 4+ A1) Xy
= UDD? +A)"'D Uy

P 2
= Zu-iuT (3.47)
=R > '

where the u; are the columns of U. Note that since A > 0, we have a3/ (d3+
A) < 1. Like linear regression, ridge regression computes the coordinates of
y with respect to the orthonormal basis U. Tt then shrinks these coordinates
by the factors d5/ (d% 4+ X). This means that a greater amount of shrinkage
is applied to basis vectors with smaller d?.

What does a small value of d]z mean? The SVD of the centered matrix
X is another way of expressing the principal components of the variables
in X. The sample covariance matrix is given by 8 = X*X/N, and from
(3.45) we have

XTX = VD?*VT, (3.48)

which is the eigen decomposition of XTX (and of S, up to a factor N'). The
eigenvectors v; are also called the principal components (or Karhunen-
Loeve) directions of X. The first principal component direction v; has
the property that z; = Xuv; has the largest sample variance amongst all
normalized linear combinations of the columns of X. This sample variance
is easily seen to be

d2
Var(z;) = Var(Xv,) = ﬁl (3.49)

and in fact z; = Xv; = uyd;. The derived variable z1 is called the first
principal component of X, and hence u; is the normalized first principal
component. Subsequent principal components z; have maximum variance
d? /N, subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues d; correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.
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FIGURE 3.8. Principal components of some input data points. The largest prin-
cipal component is the direction that mazimizes the variance of the projected
data, and the smallest principal component minimizes that variance. Ridge re-
gression projects y onto these components, and then shrinks the coefficients of
the low-variance components more than the high-variance components.

Figure 3.8 illustrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y-axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, but need not hold in
general.

In Figure 3.6 we have plotted the estimated prediction error versus the
quantity

df(\) tr[X(XTX + A1) 71 X7,

£
= Y L (3.50)
S BN

This monotone decreasing function is the effective degrees of freedom of
the ridge regression fit, as described in Section 7.6. Note that df(A\) = p
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when A = 0 (no regularization) and df(A\) — 0 as A — oo. In Figure 3.6
the minimum occurs at df(A) = 4.16. Table 3.3 shows that ridge regression
reduces the test error of the full least squares estimates by a small amount.

The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

ﬁlasso = a,rg;ninZ(yi — fBo — injﬁj)
=1 j=1

P
subject to Z 1B;] < t. (3.51)
=1

Just as in ridge regression, we can reparametrize the constant Gy by stan-
dardizing the predictors; the solution for (o is 7, and thereafter we fit a
model without an intercept (Exercise 3.11).

Notice the similarity to the ridge regression problem (3.42): the L ridge
penalty ) 7 32 is replaced by the L; lasso penalty >7|8;|. This latter
constraint makes the solutions nonlinear in the y;, and a quadratic pro-
gramming algorithm is used to compute them. Because of the nature of the
constraint, making ¢ sufficiently small will cause some of the coefficients to
be exactly zero. Thus the lasso does a kind of continuous subset selection.
If ¢ is chosen larger than to = Y] |le (where 8; = ﬂ}s, the least squares

estimates), then the lasso estimates are the 3;’s. On the other hand, for
t = to/2 say, then the least squares coefficients are shrunk by about 50%
on average. However, the nature of the shrinkage is not obvious, and we
investigate it further in Section 3.4.5 below. Like the subset size in variable
subset selection, or the penalty parameter in ridge regression, ¢ should be
adaptively chosen to minimize an estimate of expected prediction error.

In Figure 3.6, for ease of interpretation, we have plotted the lasso predic-
tion error estimates versus the standardized parameter s =t/ > 7 |6;]. A
value § ~ 0.50 was chosen by 10-fold cross-validation; this caused three co-
efficients to be set to zero (fifth column of Table 3.3). The resulting model
has the lowest test error, slightly lower than the full least squares model,
but the standard errors of the test error estimates (last line of Table 3.3)
are fairly large.

Figure 3.9 shows the lasso coefficients as the standardized tuning parame-
ter s =t/ 3.7 |B;| is varied. At s = 1.0 these are the least squares estimates;
they decrease to 0 as s — 0. This decrease is not always strictly monotonic,
although it is in this example. A vertical line is drawn at s = 0.5, the value
chosen by cross-validation.
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FIGURE 3.9. Profiles of lasso coefficients, as tuning parameter t is varied.
Coefficients are plotted versus s =t/ Y5 |B;]. A vertical line is drawn at s = 0.5,
the value chosen by cross-validation. Compare Figure 3.7 on page 61; the lasso
profiles hit zero, while those for ridge do not.
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3.4.4  Methods Using Derived Input Directions

In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
Zmy, m=1,..., M of the original inputs X;, and the Z, are then used in
place of the X as inputs in the regression. The methods differ in how the
linear combinations are constructed.

Principal Components Regression

In this approach the linear combinations Z,, used are the principal com-
ponents as defined in Section 3.4.3 above.

Principal component regression forms the derived input columns z,, =
X, and then regresses y on zi,Zo, ...,z for some M < p. Since the
Z,S are orthogonal, this regression is just a sum of univariate regressions:

M ~
Y =04 ) Onzm, (3.52)

m=1

where 0, = (Zm, )/ (Zm, Zm). Since the z,, are each linear combinations
of the original x;, we can express the solution (3.52) in terms of coefficients
of the x; (Exercise 3.12):

~ M ~
6pcr(M) = Z OmVm. (353)

m=1

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we first standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
Z = UD span the column space of X. For M < p we get a reduced regres-
sion. We see that principal components regression is very similar to ridge
regression: both operate via the principal components of the input ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.10), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p — M smallest
eigenvalue components. Figure 3.10 illustrates this.

In Figure 3.6 we see that cross-validation suggests seven terms; the re-
sulting model has about the same test error as ridge regression in Table 3.3.

Partial Least Squares

This technique also constructs a set of linear combinations of the inputs
for regression, but unlike principal components regression it uses y (in
addition to X) for this construction. We assume that y is centered and
each x; is standardized to have mean 0 and variance 1. PLS begins by
computing the univariate regression coefficient 1; of y on each x;, that
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FIGURE 3.10. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d2/(d? + X\) as in (8.47). Principal
component regression truncates them. Shown are the shrinkage and truncation
patterns corresponding to Figure 3.6, as a funetion of the principal component
indez.

is, ¢1; = (x;,y). From this we construct the derived input z1 = }_ ¢1;x;,
which is the first partial least squares direction. Hence in the construction of
each z,,, the inputs are weighted by the strength of their univariate effect
on y. The outcome y is regressed on z; giving coefficient él, and then
we orthogonalize X1, ... ,X, with respect to z;. We continue this process,
until M < p directions have been obtained. In this manner, partial least
squares produces a sequence of derived inputs or directions z, 22, ... ,zZum.
As with principal-component regression, if we were to construct all M =
p directions, we would get back a solution equivalent to the usual least
squares estimates; using M < p directions produces a reduced regression.
The procedure is described fully in Algorithm 3.2.

In the prostate cancer example, cross-validation chose M = 2 PLS direc-
tions in Figure 3.6. This produced the model given in the rightmost column
of Table 3.3.

What optimization problem is partial least squares solving? Since it uses
the response y to construct its directions, its solution is a nonlinear func-
tion of y. It can be shown that partial least squares seeks directions that
have high variance and have high correlation with the response, in contrast
to principal components regression (Stone and Brooks, 1990; Frank and
Friedman, 1993). In particular, the mth principal component direction v,
solves:

max Var(Xa), (3.54)
u}"Sa:O,e:;... ,m—1

where S is the sample covariance matrix of the x;. The conditions v} Sa = 0
ensures that z,, = Xa is uncorrelated with all the previous linear combi-
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Algorithm 3.2 Partial Least Squares.

1. Standardize each x; to have mean zero and variance one. Set §(©) =

)

1y, and x;-O =xj,7=1,...,p.

2. Form=1,2,...,p

(m (m—1)

~ -1 ~
® 7, = Z]I.J:l (pmjxj ), where Pmj = <Xj 7y>

° ém = <Zm7Y>/(zm7Zm>~
d y(m) = S,(m—l) + émzm-
e Orthogonalize each x;m_l) with respect to z,,: x§m) = x;m_l) -

(2" ) o ), 5= 1.2, .
3. Output the sequence of fitted vectors {§(™}?. Since the {zo}7 are

linear in the original x;, so is y(™) = Xﬁpls(m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

nations zy, = Xwv,. The mth PLS direction ¥m solves:

max Corr®(y, Xa)Var(Xa). (3.55)
@{Scx:()l::,.,. ,m—1

Further analysis reveals that the variance aspect tends to dominate, and
so partial least squares behaves much like ridge regression and principal
components regression. We discuss this further in the next section.

If the input matrix X is orthogonal, then partial least squares finds the
least squares estimates after m = 1 steps. Subsequent steps have no effect
since the ¢p,; are zero for m > 1 (Exercise 3.13). It can also be shown that
the sequence of PLS coefficients for m = 1, 2,... ,prepresents the conjugate
gradient sequence for computing the least squares solutions (Exercise 3.16).

3.4.5  Discussion: A Comparison of the Selection and
Shrinkage Methods

There are some simple settings where we can understand better the rela-
tionship between the different methods described above. Consider an exam-
ple with two correlated inputs X; and X, with correlation p. We assume
that the true regression coefficients are 1 = 4 and By = 2. Figure 3.11
shows the coefficient profiles for the different methods, as their tuning pa-
rameters are varied. The top panel has p = 0.5, the bottom panel p=—0.5.
The tuning parameters for ridge and lasso vary over a continuous range,
while best subset, PLS and PCR take just two discrete steps to the least
squares solution. In the top panel, starting at the origin, ridge regression
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FIGURE 3.11. Coefficient profiles from different methods for a simple problem.:
two inputs with correlation £0.5, and the true regression coefficients 8 = (4,2).
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shrinks the coefficients together until it finally converges to least squares.
PLS and PCR show similar behavior to ridge, although are discrete and
more extreme. Best subset overshoots the solution and then backtracks.
The behavior of the lasso is intermediate to the other methods. When the
correlation is negative (lower panel), again PLS and PCR roughly track
the ridge path, while all of the methods are more similar to one another.

We can gain further insight into these methods by taking a Bayesian
point of view. Suppose we adopt a Gaussian prior as discussed earlier on
page 60:

8~ N(0,7I). (3.56)

We saw that the ridge regression estimate Bridge is the posterior mode
(and mean). This reveals an interesting point: the prior (3.56) is a function
only of the length of 8 and not its direction. Therefore, ridge regression’s
shrinkage of low-variance directions is not due to a prior distribution that
favors high-variance directions; this shrinkage achieves variance reduction
to account for the correlation present in the input matrix X.

Recall that ridge regression shrinks all directions, but shrinks low-variance
directions more. Principal components regression leaves M high-variance
directions alone, and discards the rest. Hence its implicit prior puts more
probability on M high-variance directions and zero probability on p — M
low-variance directions. Interestingly, it can be shown that partial least
squares also tends to shrink the low-variance directions, but can actually
inflate some of the higher variance directions. This can make PLS a little
unstable, and cause it to have slightly higher prediction error compared to
ridge regression. A full study is given in Frank and Friedman (1993). These
authors conclude that for minimizing prediction error, ridge regression is
generally preferable to variable subset selection, principal components re-
gression and partial least squares. However the improvement over the latter
two methods was only slight.

To summarize so far, PLS, PCR and ridge regression tend to behave
similarly. Ridge regression may be preferred because it shrinks smoothly,
rather than in discrete steps.

We now focus on ridge regression, the lasso and subset regression. In the
case of an orthonormal input matrix X the three procedures have explicit
solutions. Each method applies a simple transformation to the least squares
estimate 3;, as detailed in Table 3.4. Ridge regression does a proportional
shrinkage. Best subset keeps the M largest coefficients, while lasso trans-
lates each by a constant factor, truncating at zero. This is called “soft
thresholding,” and is used in the context of wavelet-based smoothing in
Section 5.9. Note that the threshold parameter + in the lasso formula is a
one-to-one transformation of the bound ¢ appearing in the definition (3.51).

Back to the nonorthogonal case; some pictures help understand their re-
lationship. Figure 3.12 depicts the lasso (left) and ridge regression (right)
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TABLE 3.4. Estimators of B; in the case of orthonormal columns of X. A\, M
and v are constants chosen by the corresponding techniques. sign denotes the sign
of its argument (£1), and =4 denotes “positive part” of x.

Estimator Formula

Best subset (size M) B; it rank(|3;]) < M

Ridge Bi/(1+N)
Lasso sign(8;) (18] — 1)+

FIGURE 3.12. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and 8% + B2 < t?, respectively,
while the red ellipses are the contours of the least squares error function.
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FIGURE 3.13. Contours of constant value of 3_.|B;|% for given values of q.

when there are only two parameters. The residual sum of squares has ellip-
tical contours, centered at the full least squares estimate. The constraint
region for ridge regression is the disk 87 + 83 < t, while that for lasso is
the diamond |81 + |B2| < t. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
; equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces, there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

N P p
B= arg;nin{Z(yi — B — Z xi]ﬂj)2 + )\Z |,6’jlq} (3.57)
j=1 j=1

i=1

for ¢ > 0. The contours of constant value of }_ |3;|7 are shown in Fig-
ure 3.13, for the case of two inputs.

Thinking of |3;|7 as the log-prior density for §;, these are also the equi-
contours of the prior distribution of the parameters. The value ¢ = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; ¢ = 1 corresponds to the lasso, while ¢ = 2 to ridge
regression. Notice that for ¢ < 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the ¢ = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/27)exp(—|8])/7) and 7 = 1/A.
The case g = 1 (lasso) is the smallest ¢ such that the constraint region is
convex; nonconvex constraint regions make the optimization problem more
difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.57), we might try using other values of
q besides 0, 1, or 2. Indeed we might even try estimating ¢ from the data.
To our knowledge, this has not been studied.
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3.4.6 Multiple OQutcome Shrinkage and Selection

As noted in Section 3.3.1, the least squares estimates in a multiple-output
linear model are simply the individual least squares estimates for each of
the outputs.

To apply selection and shrinkage methods in the multiple output case,
one could apply a univariate technique individually to each outcome or si-
multaneously to all outcomes. With ridge regression, for example, we could
apply formula (3.44) to each column of the outcome matrix Y, using possi-
bly different parameters A, or apply it to all columns using the same value
of \. The former strategy would allow different amounts of regularization
to be applied to different outcomes but require estimation of k separate
regularization parameters Ai, ..., Ay, while the latter would permit all &
outputs to be used in estimating the sole regularization parameter .

Other more sophisticated shrinkage and selection strategies that exploit
correlations in the different responses can be helpful in the multiple output
case. Suppose for example that among the outputs we have

Yo = f(X)+ex (3.58)
Ve = f(X)+es (3.59)

i.e. (3.58) and (3.59) share the same structural part f(X) in their models.
It is clear in this case that we should pool our observations on Y; and Y]
to estimate the common f.

Combining responses is at the heart of canonical correlation analysis
(CCA), a data reduction technique developed for the multiple output case.
Similar to PCA, CCA finds a sequence of uncorrelated linear combina-
tions Xvp,, m = 1,...,M of the x;, and a corresponding sequence of
uncorrelated linear combinations Yu,, of the responses yy, such that the
correlations

Cort? (Y tm, Xvy,) (3.60)

are successively maximized. Note that at most M = min(K, p) directions
can be found. The leading canonical response variates are those linear com-
binations (derived responses) best predicted by the x;; in contrast, the
trailing canonical variates can be poorly predicted by the x;, and are can-
didates for being dropped. The CCA solution is computed using a general-
ized SVD of the sample cross-covariance matrix Y? X /N (assuming Y and
X are centered; Exercise 3.18).

Reduced-rank regression (Izenman, 1975; van der Merwe and Zidek, 1980)
formalizes this approach in terms of a regression model that explicitly pools
information. Given an error covariance Cov(g) = X, we solve the following
restricted multivariate regression problem:

N
B¥(m) = argmin Z(yz —BT5;)TS " (y; — BT;). (3.61)
rank(B)=m ;—;
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With ¥ replaced by the estimate Y'Y /N, one can show (Exercise 3.19)
that the solution is given by a CCA of Y and X:

B™(m) = BU,, U, (3.62)
where Uy, is the K x m sub-matrix of U consisting of the first m columns,

and U is the K x M matrix of left canonical vectors uq, us, ... ,usy. U
is its generalized inverse. Writing the solution as

B™(M) = (XTX) X" (YU,,) Uz, (3.63)

we see that reduced-rank regression performs a linear regression on the
pooled response matrix YU,,, and then maps the coefficients (and hence
the fits as well) back to the original response space. The reduced-rank fits
are given by

Y™ (m) = X(XTX)'XTYU, U,

(3.64)
— HYP,,,

where H is the usual linear regression projection operator, and P,, is the
rank-m CCA response projection operator. Although a better estimate of
3 would be (Y ~XB)T (Y -XB)/(N—pK ), one can show that the solution
remains the same (Exercise 3.20).

Reduced-rank regression borrows strength among responses by truncat-
ing the CCA. Breiman and Friedman (1997) explored with some success
shrinkage of the canonical variates between X and Y, a smooth version of
reduced rank regression. Their proposal has the form (compare (3.62))

B = BUAU ™!, (3.65)

where A is a diagonal shrinkage matrix (the “c+w” stands for “Curds
and Whey”, the name they gave to their procedure). Based on optimal
prediction in the population setting, they show that A has diagonal entries

2

=™ m=1,...,M, 3.66
Gorki-a)” (360

Am,
where ¢, is the mth canonical correlation coeflicient. Note that as the ratio
of the number of input variables to sample size p/N gets small, the shrink-
age factors approach 1. Breiman and Friedman (1997) proposed modified
versions of D based on training data and cross-validation, but the general
form is the same. Here the fitted response has the form

YorY = HYS HY, (3.67)

where S°t% = UAU™! is the response shrinkage operator.
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‘Breiman and Friedman (1997) also suggested shrinking in both the Y
space and X space. This leads to hybrid shrinkage models of the form

Yrideecty — A, YSHY, (3.68)

where Ay = X(XTX + AI)~*XT is the ridge regression shrinkage operator,
as in (3.46) on page 62. Their paper and the discussions thereof contain
many more details.

3.5 Computational Considerations

Least squares fitting is usually done via the Cholesky decomposition of
the matrix XTX or a QR decomposition of X. With N observations and p
features, the Cholesky decomposition requires p3 + Np? /2 operations, while
the QR decomposition requires N. p? operations. Depending on the relative
size of N and p, the Cholesky can sometimes be faster; on the other hand,
it can be less numerically stable (Lawson and Hansen, 1974). Computation
of the lasso requires quadratic programming; see for example Murray et al.
(1981).

Bibliographic Notes

Linear regression is discussed in many statistics books, for example Seber
(1984), Weisberg (1980) and Mardia et al. (1979). Ridge regression was
introduced by Hoerl and Kennard (1970), while the lasso was proposed by
Tibshirani (1996). Partial least squares was introduced by Wold (1975).
Comparisons of shrinkage methods may be found in Copas (1983) and
Frank and Friedman (1993).

Exercises

Ex. 3.1 Show that the F' statistic (3.13) for dropping a single coefficient
from a model is equal to the square of the corresponding z-score (3.12).

Ex. 3.2 Given data on two variables X and Y, consider fitting a cubic
polynomial regression model f(X) = Z?:o B;X?. In addition to plotting
the fitted curve, you would like a 95% confidence band about the curve.
Consider the following two approaches:

1. At each point zg, form a 95% confidence interval for the linear func-
tion a7 = Z?:o Bizh.
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2. Form a 95% confidence set for 8 as in (3.15), which in turn generates
confidence intervals for f(zo).

How do these approaches differ? Which band is likely to be wider? Conduct
a small simulation experiment to compare the two methods.

Ex. 3.3

(a) Prove the Gauss-Markov theorem: the least squares estimate of a pa-
rameter a” 3 has variance no bigger than that of any other linear
unbiased estimate of a” 3 (Section 3.2.2).

(b) The matrix inequality B < A holds if A — B is positive semidefinite.
Show that if V is the variance-covariance matrix of the least squares
estimate of 8 and V is the variance-covariance matrix of any other
unbiased estimate, then v < V.

Ex. 3.4 Show how the vector of least squares coefficients can be obtained
from a single pass of the Gram-Schmidt procedure (Algorithm 3.1). Rep-
resent your solution in terms of the QR decomposition of X.

Ex. 3.5 Consider the ridge regression problem (3.41). Show that this prob-
lem is equivalent to the problem

N P P
pe= argﬁrglin{z [vi =85 = D (e - 2B+ D67} (3.69)
=1 7j=1 Jj=1

Give the correspondence between 3¢ and the original 3 in (3.41). Charac-
terize the solution to this modified criterion.

Ex. 3.6 Show that the ridge regression estimate is the mean (and mode)
of the posterior distribution, under a Gaussian prior 8 ~ N(0,7I), and
Gaussian sampling model y ~ N (X3, 0%I). Find the relationship between
the regularization parameter X in the ridge formula, and the variances 7
and o2.

Ex. 3.7 Assume y; ~ N(Bo + 2 B8,02),i=1,2,...,N, and the parameters
f3; are each distributed as N (0, 72), independently of one another. Assuming
o? and 72 are known, show that the (minus) log-posterior density of 3 is

proportional to Zf;l (Wi —Bo— X, zii0;)2 + )\Zg.’:l B3 where A = 0% /72,

Ex. 3.8 Consider the QR decomposition of the uncentered N x (p + 1)
matrix X, and the SVD of the N x p centered matrix X. Show that Q.
and U span the same subspace, where Q is the sub-matrix of Q with the
first column removed. Under what circumstances will they be the same, up
to sign flips?
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Ex. 3.9 Show that the solution to the multivariate linear regression problem
(3.39) is given by (3.38). What happens if the covariance matrices X; are
different for each observation?

Ex. 3.10 Show that the ridge regression estimates can be obtained by ordi-
nary least squares regression on an augmented data set. We augment the
centered matrix X with p additional rows v/AI, and augment y with p ze-
ros. By introducing artificial data having response value zero, the fitting
procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are
implemented by adding artificial data examples that satisfy them.

Ex. 3.11 Consider the lasso problem (3.51). Show that this problem is
equivalent to the problem

N P 14
pe = arguin{ Y [us — 6~ Yo(ess ~ 2] AW @70)
i=1 j=1 Jj=1

Give the correspondence between 4¢ and the original 8 in (3.51). Charac-
terize the solution to this modified criterion.

Ex. 3.12 Derive the expression (3.53), and show that Bre (p) = f's.

Ex. 3.13 Show that in the orthogonal case, PLS stops after m = 1 steps,
because subsequent ¢r,; in step 2 in Algorithm 3.2 are zero.

Ex. 3.14 Derive the entries in Table 3.4, the explicit forms for estimators
in the orthogonal case.

Ex. 3.15 Repeat the analysis of Table 3.3 on the spam data discussed in
Chapter 1.

Ex. 3.16 Read about conjugate gradient algorithms (Murray et al., 1981, for
example) and establish a connection between these algorithms and partial
least squares.

Ex. 3.17 Show that ||3"98¢|| increases as its tuning parameter A\ — 0. Does
the same property hold for the lasso and partial least squares estimates?
For the latter, consider the “tuning parameter” to be the successive steps
in the algorithm.

Ex. 3.18 Consider the canonical-correlation problem (3.60). Show that the
leading pair of canonical variates u; and vy solve the problem

max  u’ (YTX)o, (3.711)
T (YTY)u=1
UT(XTX)u=l
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a generallized SVD problem. Shlow that the solution is given by u; =

(YTY) %}, and v; = (XTX)~2vf, where u} and vy are the leading left
and right singular vectors in

(YTY)~3(YTX)(XTX)"% = U*D*V*7. (3.72)

Show that the entire S€qUence Upm, vm, m =1,... ,min(K, p) is also given
by (3.72).

Ex. 3.19 Show that the solution to the reduced-rank regression problem
(3.61), with X estimated by YTY/N, is given by (3.62). Hint: transform

Y to Y* = YS~%, and solved in terms of the canonical vectors u,. Show
that U, = 2_%Ufn, and a generalized inverse is U, = U;‘nTZ‘%.

Ex. 3.20 Show that the solution in Exercise 3.19 does not change if ¥ is
estimated by the more natural quantity (Y — XB)T(Y - XB)/(N — pK ).
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Linear Methods for Classification

4.1 Introduction

In this chapter we revisit the classification problem and focus on linear
methods for classification. Since our predictor G(z) takes values in a dis-
crete set G, we can always divide the input space into a collection of regions
labeled according to the classification. We saw in Chapter 2 that the bound-
aries of these regions can be rough or smooth, depending on the prediction
function. For an important class of procedures, these decision boundaries
are linear; this is what we will mean by linear methods for classification.
There are several different ways in which linear decision boundaries can
be found. In Chapter 2 we fit linear regression models to the class indicator
variables, and classify to the largest fit. Suppose there are K classes, for
convenience labelled 1,2,..., K, and the fitted linear model for the kth
indicator response variable is fi(z) = Bro + BTz. The decision boundary
between class k and £ is that set of points for which fj(z) = Fo(x), that is,
the set {x : (Bro — Beo) + (Bx — Be)Tx = 0}, an affine set or hyperplane*
Since the same is true for any pair of classes, the input space is divided
into regions of constant classification, with piecewise hyperplanar decision
boundaries. This regression approach is a member of a class of methods
that model discriminant functions 0x(x) for each class, and then classify
to the class with the largest value for its discriminant function. Methods

*Strictly speaking, a hyperplane passes through the origin, while an affine set need
not. We sometimes ignore the distinction and refer in general to hyperplanes.
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that model the posterior probabilities Pr(G = k|X = z) are also in this
class. Clearly, if either the 5 (x) or Pr(G = k|X = z) are linear in z, then
the decision boundaries will be linear.

Actually, all we require is that some monotone transformation of dj, or
Pr(G = k|X = x) be linear for the decision boundaries to be linear. For
example, if there are two classes, a popular model for the posterior proba-
bilities is

v exp(Bo+ BTx)
PriG=1X=12)= 1+ exp(Bo + f17)’ (@)
Pr(G=2[X =2x) = !

1 +exp(Bo+ pTx)

Here the monotone transformation is the logit transformation: log[p/(1—p)],
and in fact we see that

Pr(G=1X =x)

8 B G =2 X =)

= Bo+ BTz (4.2)

The decision boundary is the set of points for which the log-odds are zero,
and this is a hyperplane defined by {x|3 + 872 = 0}. We discuss two very
popular but different methods that result in linear log-odds or logits: linear
discriminant analysis and linear logistic regression. Although they differ in
their derivation, the essential difference between them is in the way the
linear function is fit to the training data.

A more direct approach is to explicitly model the boundaries between
the classes as linear. For a two-class problem in a p-dimensional input
space, this amounts to modeling the decision boundary as a hyperplane—in
other words, a normal vector and a cut-point. We will look at two methods
that explicitly look for “separating hyperplanes.” The first is the well-
known perceptron model of Rosenblatt (1958), with an algorithm that finds
a separating hyperplane in the training data, if one exists. The second
method, due to Vapnik (1996), finds an optimally separating hyperplane if
one exists, else finds a hyperplane that minimizes some measure of overlap
in the training data. We treat the separable case here, and defer treatment
of the nonseparable case to Chapter 12.

While this entire chapter is devoted to linear decision boundaries, there is
considerable scope for generalization. For example, we can expand our vari-
ableset X1,... , X, by including their squares and cross-products X2, X2, . ..
X1Xo,. .., thereby adding p(p+1)/2 additional variables. Linear functions
in the augmented space map down to quadratic functions in the original
space —hence linear decision boundaries to quadratic decision boundaries.
Figure 4.1 illustrates the idea. The data are the same: the left plot uses
linear decision boundaries in the two-dimensional space shown, while the
right plot uses linear decision boundaries in the augmented five-dimensional
space described above. This approach can be used with any basis transfor-
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X2, X2. Linear inequalities in this
space are quadratic inequalities in the original space.

mation h(X) where h : R? — IR? with ¢ > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yz, k=1,..., K,
with Y3 = 1 if G = k else 0. These are collected together in a vector
Y = (V1,...,Yk), and the N training instances of these form an N x K
indicator response matriz Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Y = X(XTX)1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coefli-

cient vector for each response column yy, and hence a (p+1) x K coefficient

matrix B = (XTX)~!XTY. Here X is the model matrix with p+1 columns

corresponding to the p inputs, and a leading column of 1’s for the intercept.
A new observation with input z is classified as follows:

e compute the fitted output f(z) = [(1,2)B]7, a K vector;

e identify the largest component and classify accordingly:

G(z) = argmaxkegfk(x). (4.4)
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What is the rationale for this approach? One rather formal justification
is to view the regression as an estimate of conditional expectation. For the
random variable Y, E(Y;|X = z) = Pr(G = k|X = z), so conditional
expectation of each of the Y} seems a sensible goal. The real issue is: how
good an approximation to conditional expectation is the rather rigid linear
regression model? Alternatively, are the fj(z) reasonable estimates of the
posterior probabilities Pr(G = k|X = z), and more importantly, does this
matter? .

It is quite straightforward to verify that Y, o fu(z) = 1 for any z, as
long as there is an intercept in the model (column of 1’s in X). However,
the fk (z) can be negative or greater than 1, and typically some are. This
Is a consequence of the rigid nature of linear regression, especially if we
make predictions outside the hull of the training data. These violations in
themselves do not guarantee that this approach will not work, and in fact
on many problems it gives similar results to more standard linear meth-
ods for classification. If we allow linear regression onto basis expansions
h(X) of the inputs, this approach can lead to consistent estimates of the
probabilities. As the size of the training set N grows bigger, we adaptively
include more basis elements so that linear regression onto these basis func-
tions approaches conditional expectation. We discuss such approaches in
Chapter 5.

A more simplistic viewpoint is to construct targets ¢ for each class,
where 4 is the kth column of the K x K identity matrix. Our prediction
problem is to try and reproduce the appropriate target for an observation.
With the same coding as before, the response vector y; (ith row of Y) for
observation i has the value y; = 4 if g; = k. We might then fit the linear
model by least squares:

N
Hgnz llyi = [(1,2:)B] |2 (4.5)

The criterion is a sum-of-squared Euclidean distances of the fitted vectors
from their targets. A new observation is classified by computing its fitted
vector f(z) and classifying to the closest target:

G(z) = arg;ninllf(w) — tll*. (4.6)

This is exactly the same as the previous approach:

¢ The sum-of-squared-norm criterion is exactly the criterion for multi-
ple response linear regression, just viewed slightly differently. Since
a squared norm is itself a sum of squares, the components decouple
and can be rearranged as a separate linear model for each element.
Note that this is only possible because there is nothing in the model
that binds the different responses together.
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Linear Regression Linear Discriminant Analysis

X2
X2

1

FIGURE 4.2. The data come from three classes in R? and are easily separated
by linear decision boundaries. The right plot shows the boundaries found by linear
discriminant analysis. The left plot shows the boundaries found by linear regres-
sion of the indicator response variables. The middle class is completely masked
(never dominates).

o The closest target classification rule (4.6) is easily seen to be exactly
the same as the maximum fitted component criterion (4.4), but does
require that the fitted values sum to 1.

There is a serious problem with the regression approach when the number
of classes K > 3, especially prevalent when K is large. Because of the rigid
nature of the regression model, classes can be masked by others. Figure 4.2
illustrates an extreme situation when K = 3. The three classes are perfectly
separated by linear decision boundaries, yet linear regression misses the
middle class completely.

In Figure 4.3 we have projected the data onto the line joining the three
centroids (there is no information in the orthogonal direction in this case),
and we have included and coded the three response variables Y7, Y5 and
Ys. The three regression lines (left panel) are included, and we see that
the line corresponding to the middle class is horizontal and its fitted values
are never dominant! Thus, observations from class 2 are classified either
as class 1 or class 3. The right panel uses quadratic regression rather than
linear regression. For this simple example a quadratic rather than linear
fit (for the middle class at least) would solve the problem. However, it
can be seen that if there were four rather than three classes lined up like
this, a quadratic would not come down fast enough, and a cubic would
be needed as well. A loose but general rule is that if K > 3 classes are
lined up, polynomial terms up to degree K — 1 might be needed to resolve
them. Note also that these are polynomials along the derived direction
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FIGURE 4.3. The effects of masking on linear regression in IR for a three-class
problem. The rug plot at the base indicates the positions and class membership
of each observation. The three curves in each panel are the fitted regressions to
the three-class indicator variables; for example, for the red class, yYreq is 1 for the
red observations, and O for the green and blue. The fits are linear and quadratic
polynomials. Above each plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.

passing through the centroids, which can have arbitrary orientation. So in
p-dimensional input space, one would need general polynomial terms and
cross-products of total degree K — 1, O(p®~1) terms in all, to resolve such
worst-case scenarios.

The example is extreme, but for large K and small p such maskings
naturally occur. As a more realistic illustration, Figure 4.4 is a projection
of the training data for a vowel recognition problem onto an informative
two-dimensional subspace. There are K = 11 classes in p = 10 dimensions.
This is a difficult classification problem, and the best methods achieve
around 40% errors on the test data. The main point here is summarized in
Table 4.1; linear regression has an error rate of 67%, while a close relative,
linear discriminant analysis, has an error rate of 56%. It seems that masking
has hurt in this case. While all the other methods in this chapter are based
on linear functions of = as well, they use them in such a way that avoids
this masking problem.

4.3 Linear Discriminant Analysis

Decision theory for classification (Section 2.4) tells us that we need to know
the class posteriors Pr(G|X) for optimal classification. Suppose fi(z) is
the class-conditional density of X in class G = k, and let 7 be the prior
probability of class k, with Zszl 7, = 1. A simple application of Bayes
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Linear Discriminant Analysis
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FIGURE 4.4. A two-dimensional plot of the vowel training data. There are
eleven classes with X € IR°, and this is the best view in terms of a LDA model
(Section 4.3.8). The heavy circles are the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rates using a variety of linear techniques
on the vowel data. There are eleven classes in ten dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear regression is hurt by masking, increasing the test and training error
by over 10%.

Technique Error Rates
Training Test
Linear regression  0.48 0.67
Linear discriminant analysis  0.32 0.56
Quadratic discriminant analysis 0.01 0.53

Logistic regression 0.22 0.51
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theorem gives us

fu(@)m
Yoiey fel@)me
We see that in terms of ability to classify, having the fx(z) is almost equiv-

alent to having the quantity Pr(G = k| X = z).
Many techniques are based on models for the class densities:

Pr(G=k|lX=2)= 4.7

e linear and quadratic discriminant analysis use Gaussian densities;

e more flexible mixtures of Gaussians allow for nonlinear decision bound-
aries (Section 6.8);

e general nonparametric density estimates for each class density allow
the most flexibility (Section 6.6.2);

o Naive Bayes models are a variant of the previous case, and assume
that each of the class densities are products of marginal densities;
that is, they assume that the inputs are conditionally independent in
each class (Section 6.6.3).

Suppose that we model each class density as multivariate Gaussian

1 _l(g— Ty =1(p_
fk(x)=(27r—)1"/2We 3(z—pe)" T (@—px) (4.8)

Linear discriminant analysis (LDA) arises in the special case when we
assume that the classes have a common covariance matrix ¥ = X Vk. In
comparing two classes k and /, it is sufficient to look at the log-ratio, and
we see that

PI‘(G = le = x) fk(ac) Tk
1 =1 log —
BPG=tX=2) Bl 87,

by 1 _ .
= log ;f = 5 + 1) S (e — pae) (4.9)

+ 2T (ke — o),

an equation linear in z. The equal covariance matrices cause the normal-
ization factors to cancel, as well as the quadratic part in the exponents.
This linear log-odds function implies that the decision boundary between
classes k and {—the set where Pr(G = k|X = z) = Pr(G = £|X = z)—is
linear in z; in p dimensions a hyperplane. This is of course true for any pair
of classes, so all the decision boundaries are linear. If we divide IR? into
regions that are classified as class 1, class 2, etc., these regions will be sep-
arated by hyperplanes. Figure 4.5 (left panel) shows an idealized example
with three classes and p = 2. Here the data do arise from three Gaussian
distributions with a common covariance matrix. We have included in the
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FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

figure the contours corresponding to 95% highest probability density, as
well as the class centroids. Notice that the the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance X were spherical 01, and the class
priors were equal.

From (4.9) we see that the linear discriminant functions

. 1 _
0k(z) = TSy — 5,[-,52 g + log m, (4.10)

are an equivalent description of the decision rule, with G(z) = argmax;,0x(z)-
In practice we do not know the parameters of the Gaussian distributions,
and will need to estimate them using our training data:

e 7y = Ny/N, where Ny is the number of class-k observations;
b ﬁk = Zgi=k xi/Nk;

o B=K ¥ (@i — i) (@i — )T /(N - K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 81 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear least squares, as in (4.5).
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The LDA rule classifies to class 2 if

2 —1

N N —1
2T (i — fu) >

A i +log(N1/N) - log(N2/N)
(4.11)

N =

ATl
Mgz b2 —

)=

and class 1 otherwise. Suppose we code the targets in the two classes as +1
and —1, respectively. It is easy to show that the coefficient vector from least
squares is proportional to the LDA direction given in (4.11) (Exercise 4.2).
[In fact, this correspondence occurs for any (distinct) coding of the targets;
see Exercise 4.2]. However unless N; = N the intercepts are different and
hence the resulting decision rules are different.

Since this derivation of the LDA direction via least squares does not use a
Gaussian assumption for the features, the applicability the LDA direction
extends beyond the realm of Gaussian data. However the derivation of
the particular intercept or cut-point given in (4.11) does require Gaussian
data. Thus it makes sense to instead choose the cut-point that empirically
minimizes training error for a given dataset. This is something we have
found to work well in practice, but have not seen it mentioned in the
literature.

With more than two classes, LDA is not the same as linear regression of
the class indicator matrix, and it avoids the masking problems associated
with that approach (Hastie et al., 1994). A correspondence between regres-
sion and LDA can be established through the notion of optimal scoring,
discussed in Section 12.5.

Getting back to the general discriminant problem (4.8), if the X, are
not assumed to be equal, then the convenient cancellations in (4.9) do not
occur; in particular the pieces quadratic in z remain. We then get quadratic
discriminant functions (QDA),

1 1 _
Or(z) = =5 log | 2] — 5(3: — )2 2 — ) + log . (4.12)

The decision boundary between each pair of classes k and ¢ is described by
a quadratic equation {z : 6 (x) = §y(z)}.

Figure 4.6 shows an example (from Figure 4.1 on page 81) where the three
classes are Gaussian mixtures (Section 6.8) and the decision boundaries are
approximated by quadratic equations in z. Here we illustrate two popular
ways of fitting these quadratic boundaries. The right plot uses QDA as
described here, while the left plot uses LDA in the enlarged five-dimensional
quadratic polynomial space. The differences are generally small; QDA is the
preferred approach, with the LDA method a convenient substitute. |

tFor this figure and many similar figures in the book we compute the decision bound-
aries by an exhaustive contouring method. We compute the decision rule on a fine lattice
of points, and then use contouring algorithms to compute the boundaries.
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FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1X2, X%, X2). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

The estimates for QDA are similar to those for LDA, except that separate
covariance matrices must be estimated for each class. When p is large this
can mean a dramatic increase in parameters. Since the decision boundaries
are functions of the parameters of the densities, counting the number of
parameters must be done with care. For LDA, it seems there are (K — 1) x
(p+1) parameters, since we only need the differences 6 (z) — 0k (z) between
the discriminant functions where K is some pre-chosen class (here we have
chosen the last), and each difference requires p + 1 parameters.? Likewise
for QDA there will be (K —1) x {p(p+3)/2+1} parameters. Both LDA and
QDA perform well on an amazingly large and diverse set of classification
tasks. For example, in the STATLOG project (Michie et al., 1994) LDA
was among the top 3 classifiers for 7 of the 22 datasets, QDA among the
top 3 for 4 datasets, and one of the pair were in the top 3 for 10 datasets.
Both techniques are widely used, and entire books are devoted to LDA. It
seems that whatever exotic tools are the rage of the day, we should always
have available these two simple tools. The question arises why LDA and
QDA have such a good track record. The reason is not likely to be that
the data are approximately Gaussian, and in addition for LDA that the
covariances are approximately equal. More likely a reason is that the data
can only support simple decision boundaries such as linear or quadratic, and
the estimates provided via the Gaussian models are stable. This is a bias

#Although we fit the covariance matrix 3 to compute the LDA discriminant functions,
a much reduced function of it is all that is required to estimate the O(p) parameters
needed to compute the decision boundaries.
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Regularized Discriminant Analysis on the Vowel Data
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FIGURE 4.7. Test and training errors for the vowel data, using reqularized
discriminant analysis with a series of values of o € [0,1]. The optimum for the
test data occurs around oo = 0.9, close to quadratic discriminant analysis.

variance tradeoff—we can put up with the bias of a linear decision boundary
because it can be estimated with much lower variance than more exotic
alternatives. This argument is less believable for QDA, since it can have
many parameters itself, although perhaps fewer than the non-parametric
alternatives.

4.3.1 Regularized Discriminant Analysis

Friedman (1989) proposed a compromise between LDA and QDA, which
allows one to shrink the separate covariances of QDA toward a common
covariance as in LDA. These methods are very similar in flavor to ridge
regression. The regularized covariance matrices have the form

2k(a) =a3, + (1- a)f], (4.13)

where 3 is the pooled covariance matrix as used in LDA. Here o € [0,1]
allows a continuum of models between LDA and QDA, and needs to be
specified. In practice a can be chosen based on the performance of the
model on validation data, or by cross-validation.

Figure 4.7 shows the results of RDA applied to the vowel data. Both
the training and test error improve with increasing «, although the test
error increases sharply after o« = 0.9. The large discrepancy between the
training and test error is partly due to the fact that there are many repeat
measurements on a small number of individuals, different in the training
and test set.
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Similar modifications allow 3 itself to be shrunk toward the scalar co-
variance,

B(7) =12+ (1 - )82 (4.14)

for v € [0,1]. Replacing 3 in (4.13) by 33(y) leads to a a more general
family of covariances f)(a, 7) indexed by a pair of parameters.

In Chapter 12, we discuss other regularized versions of LDA, which are
more suitable when the data arise from digitized analog signals and images.
In these situations the features are high-dimensional and correlated, and the
LDA coefficients can be regularized to be smooth or sparse in the original
domain of the signal. This leads to better generalization and allows for
easier interpretation of the coefficients.

| 4.83.2  Computations for LDA

As a lead-in to the next topic, we briefly digress on the computations
required for LDA and especially QDA. Their computations are simplified
by diagonalizing 3 or Ek For the latter, suppose we compute the eigen-
decomposition for each 3 = UkaUk, where Uy, is p x p orthonormal,
and Dy, a diagonal matrix of positive eigenvalues di,. Then the mgredlents
for d(z) (4.12) are

A~ al _1 A A —_— A
o (z— )"y (z - fix) = [UF(z — )] "D;*[UT (2 — fw));
L] log |2k| = Ze logdkg.

In light of the computational steps outlined above, the LDA classifier
can be implemented by the following pair of steps:

o Sphere the data with respect to the common covariance estimate 3
X* « D 2UTX, where 3 = UDUT. The common covariance esti-
mate of X* will now be the identity.

e Classify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities 7.

4.3.8  Reduced-Rank Linear Discriminant Analysis

So far we have discussed LDA as a restricted Gaussian classifier. Part of
its popularity is due to an additional restriction that allows us to view
informative low-dimensional projections of the data.

The K centroids in p-dimensional input space lie in an affine subspace
of dimension < K — 1, and if p is much larger than K, this will be a con-
siderable drop in dimension. Moreover, in locating the closest centroid, we
can ignore distances orthogonal to this subspace, since they will contribute
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equally to each class. Thus we might just as well project the X* onto this
centroid-spanning subspace Hy _;, and make distance comparisons there.
Thus there is a fundamental dimension reduction in LDA, namely that we
need only consider the data in a subspace of dimension at most K — 1.
If K = 3, for instance, this could allow us to view the data in a two-
dimensional plot, color-coding the classes. In doing so we would not have
relinquished any of the information needed for LDA classification.

What if K > 37 We might then ask for a L < K —1 dimensional subspace
H; C Hg_; optimal for LDA in some sense. Fisher defined optimal to
mean that the projected centroids were spread out as much as possible in
terms of variance. This amounts to finding principal component subspaces
of the centroids themselves (principal components are described briefly in
Section 3.4.4, and in more detail in Section 14.5.1). Figure 4.4 shows such an
optimal two-dimensional subspace for the vowel data. Here there are eleven
classes, each a different vowel sound, in a ten-dimensional input space. The
centroids require the full space in this case, since K — 1 = p, but we have
shown an optimal two-dimensional subspace. The dimensions are ordered,
so we can compute additional dimensions in sequence. Figure 4.8 shows four
additional pairs of coordinates, also known as canonical or discriminant
variables.

In summary then, finding the sequences of optimal subspaces for LDA
involves the following steps:

e compute the K x p matrix of class centroids M and the common
covariance matrix W (for within-class covariance);

e compute M* = MW 3 using the eigen-decomposition of W;

¢ compute B*, the covariance matrix of M* (B for between-class covari-
ance), and its eigen-decomposition B* = V*DzV*?. The columns
vy of V* in sequence from first to last define the coordinates of the
optimal subspaces.

Combining all these operations the ¢th discriminant variable is given by
Zy = vlTX with v, = W_%vz.

Fisher arrived at this decomposition via a different route, without refer-
ring to Gaussian distributions at all. He posed the problem:

Find the linear combination Z = aT X such that the between.-
class variance is mazimized relative to the within-class variance.

Again, the between class variance is the variance of the class means of
Z, and the within class variance is the pooled variance about the means.
Figure 4.9 shows why this criterion makes sense. Although the direction
joining the centroids separates the means as much as possible (i.e., max-
imizes the between-class variance), there is considerable overlap between
the projected classes due to the nature of the covariances. By taking the
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FIGURE 4.8. Four projections onto pairs of canonical variates. Notice that as

4.3 Linear Discriminant Analysis
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the rank of the canonical variates increases, the centroids become less spread out.

In the lower right panel they appear to be superimposed, and the classes most

confused.
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FIGURE 4.9. Although the line joining the centroids defines the direction of
greatest centroid spread, the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this overlap for Gaussian data
(right panel).

covariance into account as well, a direction with minimum overlap can be
found.

The between-class variance of Z is a”Ba and the within-class variance
aTWa, where W is defined earlier, and B is the covariance matrix of the
class centroid matrix M. Note that B + W = T, where T is the total
covariance matrix of X, ignoring class information.

Fisher’s problem therefore amounts to maximizing the Rayleigh quotient,

T
a* Ba
—— 4.1
e TWa’ (4.15)
or equivalently
max a’ Ba subject to aT Wa = 1. (4.16)

This is a generalized eigenvalue problem, with a given by the largest
eigenvalue of W~'B. It is not hard to show (Exercise 4.1) that the optimal
ay is identical to v; defined above. Similarly one can find the next direction
ag, orthogonal in W to a1, such that a2 Bas/alWay is maximized; the
solution is as = wv9, and so on. The a, are referred to as discriminant
coordinates, not to be confused with discriminant functions. They are also
referred to as canonical variates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X. This line is pursued in Section 12.5.

To summarize the developments so far:

o Gaussian classification with common covariances leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data,
with respect to W, and classifying to the closest centroid (modulo
log 7x) in the sphered space.
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e Since only the relative distances to the centroids count, one can con-
fine the data to the subspace spanned by the centroids in the sphered
space.

o This subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. This decomposition is iden-
tical to the decomposition due to Fisher.

The reduced subspaces have been motivated as a data reduction (for
viewing) tool. Can they also be used for classification, and what is the
rationale? Clearly they can, as in our original derivation; we simply limit
the distance-to-centroid calculations to the chosen subspace. One can show
that this is a Gaussian classification rule with the additional restriction
that the centroids of the Gaussians lie in a L-dimensional subspace of R?.
Fitting such a model by maximum likelihood, and then constructing the
posterior probabilities using Bayes’ theorem amounts to the classification
rule described above (Exercise 4.8).

Gaussian classification dictates the logmy correction factor in the dis-
tance calculation. The reason for this correction can be seen in Figure 4.9.
The misclassification rate is based on the area of overlap between the two
densities. If the 7 are equal (implicit in that figure), then the optimal
cut-point is midway between the projected means. If the 73 are not equal,
moving the cut-point toward the smaller class will improve the error rate.
As mentioned earlier for two classes, one can derive the linear rule using
LDA (or any other method), and then choose the cut-point to minimize
misclassification error over the training data.

As an example of the benefit of the reduced-rank restriction, we return
to the vowel data. There are 11 classes and 10 variables, and hence 10
possible dimensions for the classifier. We can compute the training and
test error in each of these hierarchical subspaces; Figure 4.10 shows the
results. Figure 4.11 shows the decision boundaries for the classifier based
on the two-dimensional LDA solution.

There is a close connection between Fisher’s reduced rank discriminant
analysis and regression of an indicator response matrix. It turns out that
LDA amounts to the regression followed by an eigen-decomposition of
YTY. In the case of two classes, there is a single discriminant variable
that is identical up to a scalar multiplication to either of the columns of Y.
These connections are developed in' Chapter 12. A related fact is that if one
transforms the original predictors X to Y, then LDA using Y is identical
to LDA in the original space (Exercise 4.3).

4.4 Logistic Regression

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in z, while at the same
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LDA and Dimension Reduction on the Vowel Data
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FIGURE 4.10. Training and test error rates for the vowel data, as a function
of the dimension of the discriminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision boundaries in this space.

time ensuring that they sum to one and remain in [0,1]. The model has
the form :

Pr(G=1X=2) _ .

e G =KX =q) ~ Pt hie
Pr(G=2|X =

log =2 =0) _ g L gy

Pr(G=K|X =2) (1)

PrG=K-1|X=1) T
PrG=KX =q) -0+l

log

The model is specified in terms of K — 1 log-odds or logit transformations
(reflecting the constraint that the probabilities sum to one). Although the
model uses the last class as the denominator in the odds-ratios, the choice
of denominator is arbitrary in that the estimates are equivariant under this
choice. A simple calculation shows that

T
Pr(G=kX=2) = e’;p_(f’“”ﬂk”) — k=1,...,K -1,
14321 exp(Beo + ] x)
1

Pr(G=K|X=2) = — , (4.18)
L+ Y, exp(Beo + BT )

and they clearly sum to one. To emphasize the dependence on the entire pa-

rameter set § = {10, 61, ... , Bix—1)0, 8%_, }, we denote the probabilities

Pr(G = k|X = ) = pi(; ).
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Classification in Reduced Subspace

Canonical Coordinate 2

Canonical Coordinate 1

FIGURE 4.11. Decision boundaries for the vowel training data, in the
two-dimensional subspace spanned by the first two canonical variates. Note that in
any higher-dimensional subspace, the decision boundaries are higher-dimensional
affine planes, and could not be represented as lines.
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When K = 2, this model is especially simple, since there is only a single
linear function. It is widely used in biostatistical applications where binary
responses (two classes) occur quite frequently. For example, patients survive
or die, have heart disease or not, or a condition is present or absent.

4.4.1 Fitting Logistic Regression Models

Logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X. Since Pr(G|X) completely specifies the
conditional distribution, the multinomial distribution is appropriate. The
log-likelihood for N observations is

N
= " logpg, (233 ), (4.19)
=1

where pg(z:;0) = Pr(G = k| X = x;;0).

We discuss in detail the two-class case, since the algorithms simplify
considerably. It is convenient to code the two-class g; via a 0/1 response y;,
where y; = 1 when g; = 1, and y; = 0 when g; = 2. Let p1(z;0) = p(z;0),
and pa(x;6) =1 — p(x;0). The log-likelihood can be written

N
(8) = 3 {ulognei ) + (1 —y:)logl — p(aii )}

i=

i {yi/BTCIJi —log(1 + eﬁT’“)} . (4.20)

=1

Here 3 = {B10, 01}, and we assume that the vector of inputs x; includes
the constant term 1 to accommodate the intercept.

To maximize the log-likelihood, we set its derivatives to zero. These score
equations are

sz(yl - xz,ﬂ)) (421)

which are p+1 equations nonlinear in (. Notice that smce the ﬁrst compo-
nent of z; is 1, the first score equation specifies that Zz—l Y = Ez 1 p(zs; B);
the expected number of class ones matches the observed number (and hence
also class twos.)

To solve the score equations (4.21), we use the Newton-Raphson algo-
rithm, which requires the second-derivative or Hessian matrix

0?0
5357 = Zm, plai; B)(1 - p(ai; B). (422)
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Starting with (°4, a single Newton-Raphson update is

920(8)\ "t ot
ﬁnew — ﬂold _ (aﬂa(,g;) B(,Bﬂ)’ (4.23)

where the derivatives are evaluated at §°. . . ‘
It is convenient to write the score and Hessian in matrix notation. Let

y denote the vector of y; values, X the N X (p + 1) matrix of z; values,
p the vector of fitted probabilities with ith element p(z;;3°'¢) and W a
N x N diagonal matrix of weights with ith diagona,l element p(z;; 3°9)(1 -
d%4 T
p(xi; 8°'9)). Then —J—zaf)g = XTgy —p) and '—L’)f'aﬂag = -XTWX.
The Newton-Raphson step is thus

g = g (XTWX) ' XT(y — p)
= (XTWX)'XTW (X + Wi (y - p))
= XTWX)'X"Wz. (4.24)

In the second and third line we have re-expressed the Newton-Raphson
step as a weighted least squares step, with the response

z=XM+ Wy -p), (4.25)

sometimes known as the adjusted response. These equations get solved re-
peatedly, since at each iteration p changes, and hence so does W and z.
This algorithm is referred to as iteratively reweighted least squares or IRLS,
since each iteration solves the weighted least squares problem:

B « arg mgn(z - XB)TW(z — Xp). (4.26)

It seems that 8 = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does
converge, since the log-likelihood is concave, but overshooting can occur.
In the rare cases that the log-likelihood decreases, step size halving will
guarantee convergence.

~-For the multiclass case (K > 3) the Newton algorithm can also be ex-
pressed as an iteratively reweighted least squares algorithm, but with a
vector of K — 1 responses and a nondiagonal weight matrix per observa-
tion. The latter precludes any simplified algorithms, and in this case it is
numerically more convenient to work with the expanded vector 8 directly
_(Exercise 4.4).

Logistic regression models are used mostly as a data analysis and infer-
ence tool, where the goal is to understand the role of the input variables
in ezplaining the outcome. Typically many models are fit in a search for a
parsimonious model involving a subset of the variables, possibly with some
interactions terms. The following example illustrates some of the issues
involved.
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TABLE 4.2. Results from a logistic regression fit to the South African heart
disease data.

Coefficient Std. Error Z Score

(Intercept) —4.130 0.964 —4.285
sbp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034
1d1 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029 —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

4.4.2  Ezample: South African Heart Disease

Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried
out in three rural areas of the Western Cape, South Africa (Rousseauw
et al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data represent
white males between 15 and 64, and the response variable is the presence or
absence of myocardial infarction (MI) at the time of the survey (the overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).

We fit this model by maximum likelihood, giving the results shown in
Table 4.2.

This summary includes Z scores for each of the coefficients in the model
(coefficients divided by their standard errors); a nonsignificant Z score sug-
gests a coefficient can be dropped from the model. Each of these correspond
formally to a test of the null hypothesis that the coefficient in question is
zero, while all the others are not (also known as the Wald test). A Z score
greater than approximately 2 in absolute value is significant at the 5% level.

There are some surprises in this table of coefficients, which must be in-
terpreted with caution. Systolic blood pressure (sbp) is not significant! Nor
is obesity, and its sign is negative. This confusion is a result of the corre-
lation between the set of predictors. On their own, both sbp and obesity
are significant, and with positive sign. However, in the presence of many
other correlated variables, they are no longer needed (and can even get a
negative sign).

At this stage the analyst might do some model selection; find a subset
of the variables that are sufficient for explaining their joint effect on the
prevalence of chd. One way to proceed by is to drop the least significant co-
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TABLE 4.3. Results from stepwise logistic regression fit to South African Heart
Disease data

Coefficient Std. Error Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

141 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52

efficient, and refit the model. This is done repeatedly until no further terms
can be dropped from the model. This gave the model shown in Table 4.3.

A better but more time-consuming strategy is to refit each of the models
with one variable removed, and then perform an analysis of deviance to
decide which variable to exclude. The residual deviance of a fitted model
is minus twice its log-likelihood, and the deviance between two models is
the difference of their individual residual deviances (in analogy to sums-of-
squares). This strategy gave the same final model as above.

How does one interpret a coefficient of 0.081 (Std. Error = 0.026) for
tobacco, for example? Tobacco is measured in total lifetime usage in kilo-
grams, with a median of 1.0kg for the controls and 4.1kg for the cases.
Thus an increase of 1kg in lifetime tobacco usage accounts for an increase
in the odds of coronary heart disease of exp(0.081) = 1.084 or 8.4%. Incor-
porating the standard error we get an approximate 95% confidence interval
of exp(0.081 £ 2 x 0.026) = (1.03,1.14).

We return to these data in Chapter 5, where we see that some of the
variables have nonlinear effects, and when modeled appropriately, are not
excluded from the model.

4.4.8 Quadratic Approzimations and Inference

The maximum-likelihood parameter estimates (3 satisfy a self-consistency
relationship: they are the coefficients of a weighted least squares fit, where
the responses are

(yi — Bs)

——
z’L x‘l, ﬁ+ﬁz(1_ﬁz)’

(4.27)

and the weights are w; = p;(1—p;), both depending on § itself. Apart from
providing a convenient algorithm, this connection with least squares has
more to offer:
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e The weighted residual sum-of-squares is the familiar Pearson chi-
square statistic

a quadratic approximation to the deviance.

o Asymptotic likelihood theory says that if the model is correct, then
(3 is consistent (i.e., converges to the true ).

e A central limit theorem then shows that the distribution of 3 con-
verges to N (8, (XTWX)~1). This and other asymptotics can be de-
rived directly from the weighted least squares fit by mimicking normal
theory inference.

e Model building can be costly for logistic regression models, because
each model fitted requires iteration. Popular shortcuts are the Rao
score test which tests for inclusion of a term, and the Wald test which
can be used to test for exclusion of a term. Neither of these require
iterative fitting, and are based on the maximum-likelihood fit of the
current model. It turns out that both of these amount to adding
or dropping a term from the weighted least squares fit, using the
same weights. Such computations can be done efficiently, without
recomputing the entire weighted least squares fit.

Software implementations can take advantage of these connections. For
example, the generalized linear modeling software in S-PLUS (which in-
cludes logistic regression as part of the binomial family of models) exploits
them fully. GLM (generalized linear model) objects can be treated as linear
model objects, and all the tools available for linear models can be applied
automatically.

4.’4.4 Logistic Regression or LDA?

In Section 4.3 we find that the log-posterior odds between class k and K
are linear functions of z (4.9):

+2T 27 (e — pc)
= ao +orz. (4.29)

This linearity is a consequence of the Gaussian assumption for the class
densities, as well as the assumption of a common covariance matrix. The
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linear logistic model (4.17) by construction has linear logits:

Pr(G = k|X = z)

8 G =KX =)

= Bro + BT x. (4.30)

It seems that the models are the same. Although they have exactly the same
form, the difference lies in the way the linear coefficients are estimated. The
logistic regression model is more general, in that it makes less assumptions.
We can write the joint density of X and G as

Pr(X,G = k) = Pr(X)Pr(G = k|X), (4.31)

where Pr(X) denotes the marginal density of the inputs X. For both LDA
and logistic regression, the second term on the right has the logit-linear
form

eﬂko-i-ﬂ;?w
1+ Y0t efeothia’

Pr(G=k|X =1z)= (4.32)

where we have again arbitrarily chosen the last class as the reference.

The logistic regression model leaves the marginal density of X as an arbi-
trary density function Pr(X), and fits the parameters of Pr(G|X) by max-
imizing the conditional likelihood—the multinomial likelihood with proba-
bilities the Pr(G = k|X). Although Pr(X) is totally ignored, we can think
of this marginal density as being estimated in a fully nonparametric and
unrestricted fashion, using the empirical distribution function which places
mass 1/N at each observation.

With LDA we fit the parameters by maximizing the full log-likelihood,
based on the joint density

Pr(X, G = k) = $(X; i, Z), (433)

where ¢ is the Gaussian density function. Standard normal theory leads
easily to the estimates fig,3, and 7 given in Section 4.3. Since the linear
parameters of the logistic form (4.29) are functions of the Gaussian param-
eters, we get their maximum-likelihood estimates by plugging in the corre-
sponding estimates. However, unlike in the conditional case, the marginal
density Pr(X) does play a role here. It is a mixture density

K
Pr(X) =) med(X; p, E), (4.34)
k=1

which also involves the parameters.

What role can this additional component/restriction play? By relying
on the additional model assumptions, we have more information about the
parameters, and hence can estimate them more efficiently (lower variance).
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If in fact the true fi(z) are Gaussian, then in the worst case ignoring this
marginal part of the likelihood constitutes a loss of efficiency of ab9ut 30%
asymptotically in the error rate (Efron, 1975). Paraphrasing: with 30%
more data, the conditional likelihood will do as well.

For example, observations far from the decision boundary (which are
down-weighted by logistic regression) play a role in estimating the common
covariance matrix. This is not all good news, because it also means that
LDA is not robust to gross outliers.

From the mixture formulation, it is clear that even observations without
class labels have information about the parameters. Often it is expensive
to generate class labels, but unclassified observations come cheaply. By
relying on strong model assumptions, such as here, we can use both types
of information.

The marginal likelihood can be thought of as a regularizer, requiring
in some sense that class densities be wvisible from this marginal view. For
example, if the data in a two-class logistic regression model can be per-
fectly separated by a hyperplane, the maximum likelihood estimates of the
parameters are undefined (i.e., infinite; see Exercise 4.5). The LDA coeffi-
cients for the same data will be well defined, since the marginal likelihood
will not permit these degeneracies.

In practice these assumptions are never correct, and often some of the
components of X are qualitative variables. It is generally felt that logistic
_ regression is a safer, more robust bet than the LDA model, relying on fewer
assumptions. It is our experience that the models give very similar results,
even when LDA is used inappropriately, such as with qualitative predictors.

4.5 Separating Hyperplanes

We have seen that linear discriminant analysis and logistic regression both
estimate linear decision boundaries in similar but slightly different ways.
For the rest of this chapter we describe separating hyperplane classifiers.
%@,_ )ese procedures construct linear decision boundaries that explicitly try
to separate the data into different classes as well as possible. They provide
the basis for support vector classifiers, discussed in Chapter 12. The math-
ematical level of this section is somewhat higher than that of the previous

Figure 4.13 shows 20 data points in two classes in IR?. These data can be
separated by a linear boundary. Included in the figure (blue lines) are two
of the infinitely many possible separating hyperplanes. The orange line is
the least squares solution to the problem, obtained by regressing the —1 /1
response Y on X (with intercept); the line is given by

{2 : Bo + Pra1 + Baza = 0} (4.35)
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FIGURE 4.13. A toy example with two classes separable by a hyperplane. The
orange line is the least squares solution, which misclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
learning algorithm with different random starts.

This least squares solution does not do a perfect job in separating the
points, and makes one error. This is the same boundary found by LDA,
in light of its equivalence with linear regression in the two-class case (Sec-
tion 4.3 and Exercise 4.2).

Classifiers such as (4.35), that compute a linear combination of the input
features and return the sign, were called perceptrons in the engineering liter-
ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.14 depicts a hyperplane or affine set L defined by the equation
f(x) = Bo + BTz = 0; since we are in IR? this is a line.

Here we list some properties:

1. For any two points ; and 2 lying in L, 87 (21 — z2) = 0, and hence
B* = B/||8|| is the vector normal to the surface of L.

2. For any point zo in L, 8 2o = —fo.

3. The signed distance of any point z to L is given by
1
BT -20) = =(B"z+pbo
) = Th )
1
= ———f(x). 4.36
@’ (4.39)
Hence f(z) is proportional to the signed distance from z to the hyperplane
defined by f(z) = 0.
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FIGURE 4.14. The linear algebra of a hyperplane (affine set).

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The percept}‘on learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If
a response y; = 1 is misclassified, then zF'B+ Bo < 0, and the opposite for

a misclassified response with y; = —1. The goal is to minimize
D(B,B0) = — Y, vi(x; B+ Fo), (4.37)
1EM

where M indexes the set of misclassified points. The quantity is non-
negative and proportional to the distance of the misclassified points to
the decision boundary defined by 8Tz + By = 0. The gradient (assuming
M is fixed) is given by

D(ﬂa 130) _ .

B—Bﬂ— = - iGEM YiZs, (438)
DB.B) .

=g = ;EM: vi. (4.39)

The algorithm in fact uses stochastic gradient descent to minimize this
piecewise linear criterion. This means that rather than computing the sum
of the gradient contributions of each observation followed by a step in the
negative gradient direction, a step is taken after each observation is visited.
Hence the misclassified observations are visited in some sequence, and the
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parameters (8 are updated via

-@ol)

Here p is the learning rate, which in this case can be taken to be 1 without
loss in generality. If the classes are linearly separable, it can be shown that
the algorithm converges to a separating hyperplane in a finite number of
steps (Exercise 4.6). Figure 4.13 shows two solutions to a toy problem, each
started at a different random guess.

There are a number of problems with this algorithm, summarized in
Ripley (1996):

o When the data are separable, there are many solutions, and which
one is found depends on the starting values.

o The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.

e When the data are not separable, the algorithm will not converge,
and cycles develop. The cycles can be long and therefore hard to
detect.

The second problem can often be eliminated by seeking a hyperplane not
in the original space, but in a much enlarged space obtained by creating
many basis-function transformations of the original variables. This is anal-
ogous to driving the residuals in a polynomial regression problem down
to zero by making the degree sufficiently large. Perfect separation cannot
always be achieved: for example, if observations from two different classes
share the same input. It may not be desirable either, since the resulting
model is likely to be overfit and will not generalize well. We return to this
point at the end of the next section.

A rather elegant solution to the first problem is to add additional con-
straints to the separating hyperplane.

4.6.2  Optimal Separating Hyperplanes @

The optimal separating hyperplane separates the two classes and maximizes
the distance to the closest point from either class (Vapnik, 1996). Not only
does this provide a unique solution to the separating hyperplane problem,
but by maximizing the margin between the two classes on the training data,
this leads to better classification performance on test data.

We need to generalize criterion (4.37). Consider the optimization problem

max C
ﬂvﬂO)”ﬁ“zl (4.41)
subject to y;i(z] B+ 6o) > C, i=1,...,N.
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i i« The set of conditions ensure that all the points are at least a signed

distance C from the decision boundary defined by ( and fo, and we seek
the largest such C and associated parameters. We can get rid of the ||8|| = 1
constraint by replacing the conditions with

1
Wy@-(w%"ﬂ +fo) =2 C, (4.42)
(which redefines o) or equivalently

vi(eT B + Bo) = ClIB]- (4.43)

Since for any 3 and (3 satisfying these inequalities, any positively scaled
multiple satisfies them too, we can arbitrarily set ||| =1/C. Thus (4.41)
is equivalent to

.1 2
rﬁl}gQHﬂll

subject to y;(zT B+ Bo) > 1, i=1,...,N.

(4.44)

In light of (4.36), the constraints define an empty slab or margin around the
linear decision boundary of thickness 1/||3||. Hence we choose 8 and o to
maximize its thickness. This is a convex optimization problem (quadratic
criterion with linear inequality constraints). The Lagrange (primal) func-
tion, to be minimized w.r.t. § and [, is

N
Lp = %Hﬁll2 = " oulyi(=7 B+ Bo) - 1. (4.45)
i=1

Setting the derivatives to zero, we obtain:

N

g = Z 04Yi%i, (4.46)
i=1

Skt i o 0 = Zaiw, (4.47)
; =1

and substituting these in (4.45) we obtain the so-called Wolfe dual

; N LN N
Lp=) ai- 3 3N cionyippal on

i=1 =1 k=1
subject to a; > 0. (4.48)

The solution is obtained by maximizing Lp in the positive orthant, a sim-
pler convex optimization problem, for which standard software can be used.
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FIGURE 4.15. The same data as in Figure 4.13. The shaded region delineates
the mazimum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).

In addition the solution must satisfy the Karush-Kuhn—Tucker conditions,
which include (4.46), (4.47), (4.48) and

alyi(z] B+ Bo) — 1] = 0 Vi. (4.49)
From these we can see that

e if a; > 0, then y;(x7 B3 + o) = 1, or in other words, x; is on the
boundary of the slab;

e if y;(x7 B+8) > 1, z; is not on the boundary of the slab, and o; = 0.

From (4.46) we see that the solution vector 3 is defined in terms of a linear
combination of the support points z;—those points defined to be on the
boundary of the slab via o; > 0. Figure 4.15 shows the optimal separating
hyperplane for our toy example; there are three support points. Likewise,
Bo is obtained by solving (4.49) for any of the support points.

The optimal separating hyperplane produces a function f (z) = xTB + Bo
for classifying new observations:

G(z) = signf (). (4.50)

Although none of the training observations fall in the margin (by con-
struction), this will not necessarily be the case for test observations. The
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intuition is that a large margin on the training data will lead to good
separation on the test data.

The description of the solution in terms of support points seems to sug-
gest that the optimal hyperplane focuses more on the points that count,
and is more robust to model misspecification. The LDA solution, on the
other hand, depends on all of the data, even points far away from the de-
cision boundary. Note, however, that the identification of these support
points required the use of all the data. Of course, if the classes are really
Gaussian, then LDA is optimal, and separating hyperplanes will pay a price
for focusing on the (noisier) data at the boundaries of the classes.

Included in Figure 4.15 is the logistic regression solution to this prob-
lem, fit by maximum likelihood. Both solutions are similar in this case.
When a separating hyperplane exists, logistic regression will always find
it, since the log-likelihood can be driven to 0 in this case (Exercise 4.5).
The logistic regression solution shares some other qualitative features with
the separating hyperplane solution. The coefficient vector is defined by a
weighted least squares fit of a zero-mean linearized response on the input
features, and the weights are larger for points near the decision boundary
than for those further away.

When the data are not separable, there will be no feasible solution to
this problem, and an alternative formulation is needed. Again one can en-
large the space using basis transformations, but this can lead to artificial
separation through over-fitting. In Chapter 12 we discuss a more attractive
alternative known as the support vector machine, which allows for overlap,
but minimizes a measure of the extent of this overlap.

Bibliographic Notes

Good general texts on classification include Duda et al. (2000), Hand
(1981), McLachlan (1992) and Ripley (1996). Mardia et al. (1979) have
a concise discussion of linear discriminant analysis. Michie et al. (1994)
compare a large number of popular classifiers on benchmark datasets. Lin-
ear separating hyperplanes are discussed in Vapnik (1996). Our account of
the perceptron learning algorithm follows Ripley (1996).

Exercises

Ex. 4.1 Show how to solve the generalized eigenvalue problem max a”Ba
subject to aT’ Wa = 1 by transforming to a standard eigenvalue problem.

Ex. 4.2 Suppose we have features = € IR?, a two-class response, with class
sizes N1, N, and the target coded as —N/Ny, N/Ns.



112 4. Linear Methods for Classification

(a) Show that the LDA rule classifies to class 2 if

L
22 Y H1 + Iog( N ) log( N ))

A—1 . 1, o1, 1

'S (o — fu) > §M§2 e
and class 1 otherwise.

(b) Consider minimization of the least squares criterion

N

> (i — o — 7). (4.51)

=1

Show that the solution B satisfies

N1N2 2
N

[(N -3+ by B] B = N(jia — fi1) (4.52)

(after simplification),where 35 = (i3 — pa)(fe — )7

(c) Hence show that 3254 is in the direction (fi2 — fi1) and thus

Boc S (i — fin). (4.53)

Therefore the least squares regression coefficient is identical to the
LDA coefficient, up to a scalar multiple.

(d) Show that this result holds for any (distinct) coding of the two classes.

(e) Find the solution 3y, and hence the predicted values f = G, + 37z.
Consider the following rule: classify to class 2 if §; > 0 and class
1 otherwise. Show this is not the same as the LDA rule unless the
classes have equal numbers of observations.

(Fisher, 1936; Ripley, 1996)

Ex. 4.3 Suppose we transform the original predictors X to Y via linear
regression. In detail, let Y = X(XTX)'XTY = XB, where Y is the
indicator response matrix. Similarly for any input 2 € IR?, we get a trans-
formed vector § = BTz € R¥. Show that LDA using Y is identical to
LDA in the original space.

Ex. 4.4 Consider the multilogit model with K classes (4.17). Let 3 be the
(p + 1)(K — 1)-vector consisting of all the coefficients. Define a suitably
enlarged version of the input vector z to accommodate this vectorized co-
efficient matrix. Derive the Newton-Raphson algorithm for maximizing the
multinomial log-likelihood, and describe how you would implement this
algorithm.
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Ex. 4.5 Consider a two-class logistic regression problem with z € IR. Char-
acterize the maximum-likelihood estimates of the slope and intercept pa-
rameter if the sample x; for the two classes are separated by a point z, € RR.
Generalize this result to (a) @ € IR? (see Figure 4.15), and (b) more than
two classes.

Ex. 4.6 Suppose we have N points z; in IR? in general position, with class
labels y; € {—1,1}. Prove that the perceptron learning algorithm converges
to a separating hyperplane in a finite number of steps:

(a) Denote a hyperplane by f () =BFz+ 8, = 0, or in more compact
notation AT2* = 0, where z* = (z,1) and g = (61, 5)- Let z; =
z}/|lz7||. Show that separability implies the existence of a Bopt such
that yiﬂg;)tzi >1Vi

(b) Given a current 3,4, the perceptron algorithm identifies a point z; that
is misclassified, and produces the update Bnew < Bolq + ¥izi. Show
that || Bnew — Bopt| > < ||Bora — Bopt||*—1, and hence that the algorithm
converges to a separating hyperplane in no more than [|Bstart — Bops | |?
steps (Ripley, 1996).

Ex. 4.7 Consider the criterion
' N
D*(8,60) = =Y _yi(zTB + o), (4.54)
i=1

a generalization of (4.37) where we sum over all the observations. Consider
minimizing D* subject to ||3|| = 1. Describe this criterion in words. Does
it solve the optimal separating hyperplane problem?

Ex. 4.8 Consider the multivariate Gaussian model X |G =k ~ N(u, %),
with the additional restriction that rank{p }¥ = L < max(K — 1,p).
Derive the constrained MLEs for the pr and 3. Show that the Bayes clas-
sification rule is equivalent to classifying in the reduced subspace computed
by LDA (Hastie and Tibshirani, 1996D).

Ex. 4.9 Write a computer program to perform a quadratic discriminant
analysis by fitting a separate Gaussian model per class. Try it out on the
vowel data, and compute the misclassification error for the test data. The
data can be found in the book website www-stat . stanford.edu/ElemStatLearn.
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Basis Expansions and Regularization

5.1 Introduction

We have already made use of models linear in the input features, both for
regression and classification. Linear regression, linear discriminant analysis,
logistic regression and separating hyperplanes all rely on a linear model.
It is extremely unlikely that the true function f(X) is actually linear in
X. In regression problems, f(X) = E(Y|X) will typically be nonlinear and
nonadditive in X, and representing f(X) by a linear model is usually a con-
venient, and sometimes a necessary, approximation. Convenient because a
linear model is easy to interpret, and is the first-order Taylor approxima-
tion to f(X). Sometimes necessary, because with N small and/or p large,
a linear model might be all we are able to fit to the data without overfit-
ting. Likewise in classification, a linear, Bayes-optimal decision boundary
implies that some monotone transformation of Pr(Y = 1|X) is linear in X.
This is inevitably an approximation.

In this chapter and the next we discuss popular methods for moving
beyond linearity. The core idea in this chapter is to augment/replace the
vector of inputs X with additional variables, which are transformations of
X, and then use linear models in this new space of derived input features.

Denote by hn(X) : RP — IR the mth transformation of X, m =
1,..., M. We then model

f(X) = Brmhm(X), (5.1)

M=
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a linear basis expansion in X. The beauty of this approach is that once thg;{
basis functions h,, have been determined, the models are linear in these
new variables, and the fitting proceeds as before.

Some simple and widely used examples of the h,, are the following:

® hm(X) = Xm, m=1,...,p recovers the original linear model.

® hn(X) = X7 or hy(X) = X; Xy allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the de-
gree of the polynorﬁial. A full quadratic model in p variables requires
O(p?) square and cross-product terms, or more generally O(p?) for a
degree-d polynomial.

® hm(X) = log(X;), 1/Xj,... permits other nonlinear transforma-
tions of single inputs. More generally one can use similar functions
involving several inputs, such as hn,(X) = || X]|.

® hy(X) = I(Lm < Xi, < Up,), an indicator for a region of Xj. By
breaking the range of X}, up into M such nonoverlapping regions
results in a model with a piecewise constant contribution for X k-

Sometimes the problem at hand will call for particular basis functions R,
such as logarithms or power functions. More often, however, we use the basis
expansions as a device to achieve more flexible representations for F(X).
Polynomials are an example of the latter, although they are limited by
their global nature—tweaking the coefficients to achieve a functional form
in one region can cause the function to flap about madly in remote regions.
In this chapter we consider more useful families of plecewise-polynomials
and splines that allow for local polynomial representations. We also discuss
the wavelet bases, especially useful for modeling signals and images. These
methods produce a dictionary D consisting of typically a very large number
ID| of basis functions, far more than we can afford to fit to our data. Along
with the dictionary we require a method for controlling the complexity
of our model, using basis functions from the dictionary. There are three
common approaches:

e Restriction methods, where we decide before-hand to limit the class
of functions. Additivity is an example, where we assume that our
model has the form

fX) = i

X;)
Bimhjm (X;)- (5.2)
1

M=

3
I

p
=1
p
=1
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The size of the model is limited by the number of basis functions M;
used for each component function f;.

Selection methods, which adaptively scan the dictionary and include
only those basis functions hm that contribute significantly to the fit of
the model. Here the variable selection techniques discussed in Chap-
ter 3 are useful. The stagewise greedy approaches such as CART,
MARS and boosting fall into this category as well.

e Regularization methods where we use the entire dictionary but re-
strict the coefficients. Ridge regression is a simple example of a regu-
larization approach, while the lasso is both a regularization and selec-
tion method. Here we discuss these and more sophisticated methods

for regularization.

5.2 Piecewise Polynomials and Splines

We assume until Section 5.7 that X is one-dimensional. A piecewise poly-
nomial function f(X) is obtained by dividing the domain of X into contigu-
ous intervals, and representing f by a separate polynomial in each interval.
Figure 5.1 shows two simple piecewise polynomials. The first is piecewise
constant, with three basis functions:

mX)=I(X <&), h(X)=I¢E<X<&), h(X)=I(<X).

Since these are positive over disjoint regions, the least squares estimate of
the model f(X) = Y3 _, Bmhm(X) amounts to By, = Yy, the mean of Y
in the mth region.

The top right panel shows a piecewise linear fit. Three additional basis
functions are needed: hy,t3 = hy (X)X, m = 1,...,3. Except in special
cases, we would typically prefer the third panel, which is also piecewise
linear, but restricted to be continuous at the two knots. These continu-
ity restrictions lead to linear constraints on the parameters; for example,
F€7) = f(&) implies that 81 + & 64 = B2 +£105. In this case, since there
aretwo restrictions, we expect to get back two parameters, leaving four free
- A more direct way to proceed in this case is to use a basis that incorpo-
f"@if% the constraints:

M(X)=1, h(X)=X, h3(X)=(X-&)s, ha(X)=(X-6)4,

where ¢ denotes the positive part. The function hs is shown in the lower
right panel of Figure 5.1. We often prefer smoother functions, and these
can be achieved by increasing the order of the local polynomial. Figure 5.2
shows a series of piecewise-cubic polynomials fit to the same data, with
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Piecewise Constant Piecewise Linear

U T

& &2 & &

FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
&1 and €. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piece-
wise-linear basis function, h3(X) = (X —&1)+, continuous at &1. The black points
indicate the sample evaluations hs(z;), 1 =1,...,N.
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Piecewise Cubic Polynomials

Discontinuous Continuous

& & & &

Continuous First Derivative

& &2 & &

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at & and &:

m(X) =1, ha(X)=X2% hs(X)=(X-&),

5 N (6.3)
hao(X) = X, ha(X)=X3 he(X)=(X-&);.
There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)x (4
parameters per region) —(2 knots)x (3 constraints per knot)= 6.
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More generally, an order-M spline with knots &;, 5 = 1,...,K is a
piecewise-polynomial of order M, and has continuous derivatives up to
order M — 2. A cubic spline has M = 4. In fact the piecewise-constant
function in Figure 5.1 is an order-1 spline, while the continuous piece-
wise linear function is an order-2 spline. Likewise the general form for the
truncated-power basis set would be

hi(X) = X7 j=1,...,M,
hM+l(X) = (X _é-e)f_la L= 1,... aK'

It is claimed that cubic splines are the lowest-order spline for which the
knot-discontinuity is not visible to the human eye. There is seldom any
good reason to go beyond cubic-splines, unless one is interested in smooth
derivatives. In practice the most widely used orders are M = 1,2 and 4.

These fixed-knot splines are also known as regression splines. One needs
to select the order of the spline, the number of knots and their placement.
One simple approach is to parameterize a family of splines by the number
of basis functions or degrees of freedom, and have the observations z; de-
termine the positions of the knots. For example, the expression bs(x,df=7)
in S-PLUS generates a basis matrix of cubic-spline functions evaluated at
the N observations in x, with the 7 — 3 = 4* interior knots at the ap-
propriate percentiles of x (20, 40, 60 and 80th.) One can be more explicit,
however; bs(x, degree=1, knots = c(0.2, 0.4, 0.6)) generates a basis for
linear splines, with three interior knots, and returns an N x 4 matrix.

Since the space of spline functions of a particular order and knot sequence
is a vector space, there are many equivalent bases for representing them
(just as there are for ordinary polynomials.) While the truncated power
basis is conceptually simple, it is not too attractive numerically: powers of
large numbers can lead to severe rounding problems. The B-spline basis,
described in the Appendix to this chapter, allows for efficient computations
even when the number of knots K is large.

5.2.1 Natural Cubic Splines

We know that the behavior of polynomials fit to data tends to be erratic
near the boundaries, and extrapolation can be dangerous. These problems
are exacerbated with splines. The polynomials fit beyond the boundary
knots behave even more wildly than the corresponding global polynomials
in that region. This can be conveniently summarized in terms of the point-
wise variance of spline functions fit by least squares (see the example in the
next section for details on these variance calculations). Figure 5.3 compares

*A cubic spline with four knots is eight-dimensional. The bs() function omits by
default the constant term in the basis, since terms like this are typically included with
other terms in the model.
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FIGURE 5.3. Pointwise variance curves for four different models, with X con-
sisting of 50 points drawn at random from U[0,1], and an assumed error model
with constant variance. The linear and cubic polynomial fits have two and four
degrees of freedom respectively, while the cubic spline and natural cubic spline
each have siz degrees of freedom. The cubic spline has two knots at 0.33 and 0.66,
while the natural spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.

the pointwise variances for a variety of different models. The explosion of
the variance near the boundaries is clear, and inevitably is worst for cubic
splines.

A natural cubic spline adds additional constraints, namely that the func-

tion is linear beyond the boundary knots. This frees up four degrees of
freedom (two constraints each in both boundary regions), which can be
spent more profitably by sprinkling more knots in the interior region. This
tradeoff is illustrated in terms of variance in Figure 5.3. There will be a
price paid in bias near the boundaries, but assuming the function is lin-
ear near the boundaries (where we have less information anyway) is often
considered reasonable.
/A natural cubic spline with K knots is represented by K basis functions.
One can start from a basis for cubic splines, and derive the reduced ba-
sis. by imposing the boundary constraints. For example, starting from the
truncated power series basis described in Section 5.2, we arrive at (Exer-
cise 5.4):

N(X)=1, No(X)=X, Nipa(X)=de(X)—dx_1(X), (5.4)
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where
_ X&) - (X -k}
4(X) = Ex — & )

Each of these basis functions can be seen to have zero second and third
derivative for X > £x.

(5.5)

9.2.2  Ezample: South African Heart Disease (Continued)

In Section 4.4.2 we fit linear logistic regression models to the South African
heart disease data. Here we explore nonlinearities in the functions using
natural splines. The functional form of the model is

logit[Pr(chd|X)] = 6o + h1(X1)T01 + ha(X2)T82 + -+ + hy(X,)76,,
(5.6)

where each of the 6; are vectors of coefficients multiplying their associated
vector of natural spline basis functions h;. ‘

We use four natural spline bases for each term in the model. For example,
with X; representing sbp, h1(X1) is a basis consisting of four basis func-
tions. This actually implies three rather than two interior knots (chosen at
uniform quantiles of sbp), plus two boundary knots at the extremes of the
data, since we exclude the constant term from each of the h;.

Since famhist is a two-level factor, it is coded by a simple binary or
dummy variable, and is associated with a single coefficient in the fit of the
model.

More compactly we can combine all p vectors of basis functions (and
the constant term) into one big vector h(X), and then the model is simply
h(X)T6, with total number of parameters df = 1 + Z§=1 df;, the sum of
the parameters in each component term. Each basis function is evaluated
at each of the N samples, resulting in a N x df basis matrix H. At this
point the model is like any other linear logistic model, and the algorithms
described in Section 4.4.1 apply.

We carried out a backward stepwise deletion process, dropping terms
from this model while preserving the group structure of each term, rather
than dropping one coefficient at a time. The AIC statistic (Section 7.5) was
used to drop terms, and all the terms remaining in the final model would
cause AIC to increase if deleted from the model (see Table 5.1). Figure 5.4
shows a plot of the final model selected by the stepwise regression. The
functions displayed are f;(X;) = h;(X;)T6; for each variable X;. The
covariance matrix Cov(d) = X is estimated by 33 = (HTWH)"!, where W
is the diagonal weight matrix from the logistic regression. Hence v;(X;) =
Var(f;(X;)] = hj(X;)T%;5h;(X;) is the pointwise variance function of i,
where Cov(éj) =% 57 is the appropriate sub-matrix of 3. The shaded region
in each panel is defined by f; (X5) £ 24/v;(X;).
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FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).
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TABLE 5.1. Final logistic regression model, after stepwise deletion of natural
splines terms. The column labeled “LRT” is the likelihood-ratio test statistic when
that term is deleted from the model, and is the change in deviance from the Sfull
model (labeled “none”).

Terms Df Deviance AIC LRT P-value
none 458.09 502.09

sbp 4 467.16 503.16  9.076 0.059
tobacco 4 470.48 506.48 12.387 0.015
1d1 4 472.39 508.39 14.307 0.006
famhist 1 479.44 521.44 21.356 0.000
obesity 4 466.24 502.24  8.147 0.086
age 4 481.86 517.86 23.768 0.000

The AIC statistic is slightly more generous than the likelihood-ratio test
(deviance test). Both sbp and obesity are included in this model, while
they were not in the linear model. The figure explains why, since their
contributions are inherently nonlinear. These effects at first may come as
a surprise, but an explanation lies in the nature of the retrospective data.
These measurements were made sometime after the patients suffered a
heart attack, and in many cases they had already benefited from a healthier
diet and lifestyle, hence the apparent increase in risk at low values for
obesity and sbp. Table 5.1 shows a summary of the selected model.

5.2.3 Ezample: Phoneme Recognition

In this example we use splines to reduce flexibility rather than increase it;
the application comes under the general heading of functional modeling. In
the top panel of Figure 5.5 are displayed a sample of 15 log-periodograms
for each of the two phonemes “aa” and “a0” measured at 256 frequencies.
The goal is to use such data to classify a spoken phoneme. These two
phonemes were chosen because they are difficult to separate.

The input feature is a vector x of length 256, which we can think of as
a vector of evaluations of a function X (f) over a grid of frequencies f. In
reality there is a continuous analog signal which is a function of frequency,
and we have a sampled version of it.

The gray lines in the lower panel of Figure 5.5 show the coefficients of
a linear logistic regression model fit by maximum likelihood to a training
sample of 1000 drawn from the total of 695 “aa”s and 1022 “ao”s The
coefficients are also plotted as a function of frequency, and in fact we can
think of the model in terms of its continuous counterpart

og LI aa:‘;(() / X(f)B(f)df, (5.7)
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!:"IG”URE 5.5. The top panel displays the log-periodogram as a function of fre-

,  for 15 ezamples each of the phonemes “aa” and “ao” sampled from a total
0f 695 “aa”s and 1022 “a0”s. Each log-periodogram is measured at 256 uniformly
shubed. freiiéncies. The lower panel shows the coefficients (as a function of fre-
quency) of a logistic regression fit to the data by mazimum likelihood, using the
256 log-periodogram values as inputs. The coefficients are restricted to be smooth
in the red curve, and are unrestricted in the jagged gray curve.
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which we approximate by

256 256 ’
ZX(fj)ﬂ(fj) = Zfﬂjﬂj- (5.8)

The coefficients compute a contrast functional, and will have appreciable
values in regions of frequency where the log-periodograms differ between
the two classes.

The gray curves are very rough. Since the input signals have fairly strong
positive autocorrelation, this results in negative autocorrelation in the co-
efficients. In addition the sample size effectively provides only four obser-
vations per coefficient.

Applications such as this permit a natural regularization. We force the
coeflicients to vary smoothly as a function of frequency. The red curve in the
lower panel of Figure 5.5 shows such a smooth coefficient curve fit to these
data. We see that the lower frequencies offer the most discriminatory power.
Not only does the smoothing allow easier interpretation of the contrast, it
also produces a more accurate classifier:

Raw | Regularized
Training error || 0.080 0.185
Test error 0.255 0.158

The smooth red curve was obtained through a very simple use of natural
cubic splines. We can represent the coefficient function as an expansion of
splines 3(f) = Zf\,{:l P (f)0m. In practice this means that § = H6 where,
H is a p x M basis matrix of natural cubic splines, defined on the set of
frequencies. Here we used M = 12 basis functions, with knots uniformly
placed over the integers 1,2,...,256 representing the frequencies. Since
273 = £THO, we can simply replace the input features z by their filtered
versions ¢* = H”z, and fit by linear logistic regression on the z*. The
red curve is thus 3(f) = h(f)74.

9.3 Filtering and Feature Extraction

In the previous example, we constructed a p x M basis matrix H, and then
transformed our features = into new features z* = H7z. These filtered
versions of the features were then used as inputs into a learning procedure:
in the previous example, this was linear logistic regression.

Preprocessing of high-dimensional features is a very general and pow-
erful method for improving the performance of a learning algorithm. The
preprocessing need not be linear as it was above, but can be a general
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- (naﬂihear)y function of the form z* = g(z). T.he derived .features z* can
then be used as inputs into any (linear or nonlinear) learning pro?edure.
For example, for signal or image recognition a popular approach is to first

transform the raw features via a wavelet transform z* = HTz (Section 5.9)

and then use the features z* as inputs into a neural network (Chapter 11).

Wavelets are effective in capturing discrete jumps or edges, and the neural

network is a powerful tool for constructing nonlinear functions of these

features for predicting the target variable. By using domain knowledge
to construct appropriate features, one can often improve upon a learning

method that has only the raw features z at its disposal. .

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob-
lem completely by using a maximal set of knots. The complexity of the fit
is controlled by regularization. Consider the following problem: among all
functions f(x) with two continuous derivatives, find one that minimizes the
penalized residual sum of squares

N
RSS(f,0) = Y us — F@)P 4 [ (7 (O (59)
i=1

where ) is a fixed smoothing parameter. The first term measures closeness .
to the data, while the second term penalizes curvature in the function, and
) establishes a tradeoff between the two. Two special cases are:

A=0: f can be any function that interpolates the data.

A = 0o : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that A € (0, oc)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an infinite-dimensional function space—
in fact, a Sobolev space of functions for which the second term is defined.
“Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
: ique minimizer which is a natural cubic spline with knots at the unique
_values of the z;, ¢ = 1,... , N (Exercise 5.7). At face value it seems that
ghe family is still over-parametrized, since there are as many as N knots,
~which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the linear fit.

Since the solution is a natural spline, we can write it as

N
f@) =" Ni(2)0;, (5.10)
Jj=1
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FIGURE 5.6. The response is the relative change in bone mineral density mea-
sured at the spine in adolescents, as a function of age. A separate smoothing spline
was fit to the males and females, with A\ =~ 0.00022. This choice corresponds to
about 12 degrees of freedom.

where the N;(z) are an N-dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
criterion thus reduces to

RSS(6,\) = (y — NO)T(y — N6) + M7 Qp0, (5.11)

where {N};; = Nj(z;) and {Qn};x = [ Nj(t)N(t)dt. The solution is
easily seen to be

6 = (NTN + \Qy) N7y, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by
~ N ~
f@) = Y Ni@)b;. (5.13)
j=1

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data
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e golor coded by gender, and two separate curves were fit. This simple
 gumimary reinforces the evidence in the data that the growth spurt for
females precedes that for males by about two years. In both cases the
" smoothing parameter A was approximately 0.00022; this choice is discussed

in the next section.

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how X is chosen for the smoothing spline. Later
in this chapter we describe automatic methods using techniques such as
cross-validation. In this section we discuss intuitive ways of prespecifying
the amount of smoothing.

A smoothing spline with prechosen X is an example of a linear smoother
(s in linear operator). This is because the estimated parameters in (5.12)
are a linear combination of the y;. Denote by f the N-vector of fitted values
F(z;) at the training predictors z;. Then

f N(NTN + \Qy) !Nty

S)y- (5.14)

Again the fit is linear in y, and the finite linear operator S, is known as

the smoother matriz. One consequence of this linearity is that the recipe

for. producing f from y does not depend on y itself; S) depends only on

the z; and . '
Linear operators are familiar in more traditional least squares fitting as

well. Suppose B¢ is a N x M matrix of M cubic-spline basis functions

evaluated at the N training points z;, with knot sequence &, and M < N.

Then the vector of fitted spline values is given by

f = Be(B{By) 'Bly

= Hy. (5.15)

iy

B ﬁere the linear operator H is a projection operator, also known as the hat

in statistics. There are some important similarities and differences

:.a,nd SA:

E e [T
» a,;evzsymmetric, positive semidefinite matrices.

HH; = H; (idempotent), while S3S) < Sj, meaning that the right-
~ hand side exceeds the left-hand side by a positive semidefinite matrix.

- This is a consequence of the shrinking nature of Sy, which we discuss
. further below.

® H; has rank M, while S, has rank N.
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The expression M = trace(H,) gives the dimension of the projection space,
which is also the number of basis functions, and hence the number of pa-
rameters involved in the fit. By analogy we define the effective degrees of
freedom of a smoothing spline to be

dfy = trace(S,), (5.16)

the sum of the diagonal elements of Sy. This very useful definition allows
us a more intuitive way to parameterize the smoothing spline, and indeed
many other smoothers as well, in a consistent fashion. For example, in Fig-
ure 5.6 we specified dfy = 12 for each of the curves, and the corresponding
A = 0.00022 was derived numerically by solving trace(S,) = 12. There are
many arguments supporting this definition of degrees of freedom, and we
cover some of them here.

Since S is symmetric (and positive semidefinite), it has a real eigen-
decomposition. Before we proceed, it is convenient to rewrite S in the
Reinsch form

Sx=(T+2K)™, (5.17)
where K does not depend on A (Exercise 5.9). Since f=s Ay solves
min(y — £)T(y - f) + MTKT, (5.18)

K is known as the penalty matriz, and indeed a quadratic form in K has
a representation in terms of a weighted sum of squared (divided) second
differences. The eigen-decomposition of Sy is

N
Sx=>_ pr(Nupuf (5.19)
k=1
with
(A) = ! (5.20)
Pk 1+ My '

and dy the corresponding eigenvalue of K.

Figure 5.7 (top) shows the results of applying a cubic smoothing spline to
some air pollution data (128 observations). Two fits are given: a smoother
fit corresponding to a larger penalty A and a rougher fit for a smaller
penalty. The lower panels represent the eigenvalues (lower left) and some
eigenvectors (lower right) of the corresponding smoother matrices. Some of
the highlights of the eigenrepresentation are the following:

e The eigenvectors are not affected by changes in ), and hence the whole
family of smoothing splines (for a particular sequence x) indexed by
A have the same eigenvectors.
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FIGURE 5.7. [Top] Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fits correspond to different values of the smoothing
parameter, chosen to achieve 5 and 11 effective degrees of freedom, defined by
df, = trace(S.). [Lower left] First 25 eigenvalues for the two smoothing-spline
matrices. The first two are ezactly 1, and all are 2 0. [Lower right] third to
sizth eigenvectors of the spline smoother matrices. In each case, ui is plotted
against x, and as such is viewed as a function of x. The rug at the base of the
plots indicate the occurrence of data points. The damped functions represent the
smoothed versions of these functions (using the 5df smoother).
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e S,y = Eszl urpr(A)(uk,y), and hence the smoothing spline oper-
ates by decomposing y w.r.t. the (complete) basis {u;}, and differ-
entially shrinking the contributions using px(A). This is to be con-
trasted with a basis-regression method, where the components are
either left alone, or shrunk to zero—that is, a projection matrix such
as H above has M eigenvalues equal to 1, and the rest are 0. For
this reason smoothing splines are referred to as shrinking smoothers,
while regression splines are projection smoothers (see Figure 3.10 on
page 67).

e The sequence of uy, ordered by decreasing pi()), appear to increase
in complexity. Indeed, they have the zero-crossing behavior of polyno-
mials of increasing degree. Since Syuy = pr(\)ug, we see how each of
the eigenvectors themselves are shrunk by the smoothing spline: the
higher the complexity, the more they are shrunk. If the domain of X
is periodic, then the uy are sines and cosines at different frequencies.

e The first two eigenvalues are always one, and they correspond to the
two-dimensional eigenspace of functions linear in = (Exercise 5.11),
which are never shrunk.

o The eigenvalues pi(A) = 1/(1 + Ady) are an inverse function of the
eigenvalues d;, of the penalty matrix K, moderated by A; A controls
the rate at which the pg()) decrease to zero. d; = do = 0 and again
linear functions are not penalized.

e One can reparametrize the smoothing spline using the basis vectors
uy (the Demmler—Reinsch basis). In this case the smoothing spline
solves

min [|y — U0|% + 267 Do, (5.21)

where U has columns uy and D is a diagonal matrix with elements
d.

o dfy = trace(S,) = Egzl pr(A). For projection smoothers, all the
eigenvalues are 1, each one corresponding to a dimension of the pro-
jection subspace.

Figure 5.8 depicts a smoothing spline matrix, with the rows ordered with
z. The banded nature of this representation suggests that a smoothing
spline is a local fitting method, much like the locally weighted regression
procedures in Chapter 6. The right panel shows in detail selected rows of
S, which we call the equivalent kernels. As A — 0, dfy — N, and Sy — I,
the N-dimensional identity matrix. As A — oo, dfy — 2, and Sy — H, the
hat matrix for linear regression on x.



5.4 Smoothing Splines 133

Equivalent Kernels

Smoother Matrix

FIGURE 5.8. The smoother matriz for a smoothing spline is nearly banded,
indicating an equivalent kernel with local support. The left panel represents the
elements of S as an image. The right panel shows the equivalent kernel or weight-
ing function in detail for the indicated rows.
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5.5 Automatic Selection of the Smoothing
Parameters

The smoothing parameters for regression splines encompass the degree of
the splines, and the number and placement of the knots. For smoothing
splines, we have only the penalty parameter ) to select, since the knots are
at all the unique training X’s, and cubic degree is almost always used in
practice.

Selecting the placement and number of knots for regression splines can be
a combinatorially complex task, unless some simplifications are enforced.
The MARS procedure in Chapter 9 uses a greedy algorithm with some
additional approximations to achieve a practical compromise. We will not
discuss this further here.

5.5.1 Fizing the Degrees of Freedom

Since dfy = trace(Sy) is monotone in A for smoothing splines, we can
invert the relationship and specify A by fixing df. In practice this can be
achieved by simple numerical methods. So, for example, in S-PLUS one
can use smooth.spline(x,y,df=6) to specify the amount of smoothing. This
encourages a more traditional mode of model selection, where we might
try a couple of different values of df, and select one based on approximate
F'-tests, residual plots and other more subjective criteria. Using df in this
way provides a uniform approach to compare many different smoothing
methods. It is particularly useful in generalized additive models (Chapter 9),
where several smoothing methods can be simultaneously used in one model.

5.5.2  The Bias—Variance Tradeoff

Figure 5.9 shows the effect of the choice of df) when using a smoothing
spline on a simple example:

Y =f(X) +e,
_ sin(12(X +0.2)) (5.22)
1X) = X+02

with X ~ U[0,1] and € ~ N(0,1). Our training sample consists of N = 100
pairs x;,y; drawn independently from this model.

The fitted splines for three different values of df are shown. The yellow
shaded region in the figure represents the pointwise standard error of fj,
that is, we have shaded the region between fi(z) + 2 - se(fi(z)). Since
f= S)\Ya

Cov(f) = S,Cov(y)ST
= 8,8t (5.23)
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FIGURE 5.9. The top left panel shows the EPE()\) and CV(\) curves for a
realization from a nonlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded £2x standard error bands, for three different values of df,.
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The diagonal contains the pointwise variances at the training x;. The bias:
is given by : :

Bias(f) f — E(f)

= f—S,f, (5.24)

where f is the (unknown) vector of evaluations of the true f at the training
X'’s. The expectations and variances are with respect to repeated draws
of samples of size N = 100 from the model (5.22). In a similar fashion
Var(fx(zo)) and Bias(fx(zo)) can be computed at any point z (Exer-
cise 5.10). The three fits displayed in the figure give a visual demonstration
of the bias-variance tradeoff associated with selecting the smoothing pa-
rameter.

dfy = 5: The spline under fits, and clearly trims down the hills and fills in
the valleys. This leads to a bias that is most dramatic in regions of
high curvature. The standard error band is very narrow, so we esti-
mate a badly biased version of the true function with great reliability!

dfy = 9: Here the fitted function is close to the true function, although a
slight amount of bias seems evident. The variance has not increased
appreciably.

dfy = 15: The fitted function is somewhat wiggly, but close to the true
function. The wiggliness also accounts for the increased width of the
standard error bands—the curve is starting to follow some individual
points too closely.

Note that in these figures we are seeing a single realization of data and
hence fitted spline f in each case, while the bias involves an expectation
E(f). We leave it as an exercise (5.10) to compute similar figures where the
bias is shown as well. The middle curve seems “just right,” in that it has
achieved a good compromise between bias and variance.

The integrated squared prediction error (EPE) combines both bias and

variance in a single summary:

EPE(f\) = E(Y - A(X))?
= Var(Y)+E [Bias2(f>\(X )) + Var(fr(X ))]
= % +MSE(f»). (5.25)

Note that this is averaged both over the training sample (giving rise to fA),
and the values of the (independently chosen) prediction points (X,Y). EPE
is a natural quantity of interest, and does create a tradeoff between bias
and variance. The blue points in the top left panel of Figure 5.9 suggest
that dfy = 9 is spot on!
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Since we don’t know the true function, we do not have access to EPE, and
need an estimate. This topic is discussed in some detail in Chapter 7, and
techniques such as K-fold cross-validation, GCV and C, are all in common
use. In Figure 5.9 we include the N-fold (leave-one-out) cross-validation

curve:

P9 (2) (5.26)

N

2 (i

N

Z (1_ ;‘:ﬁ)) | (5.27)
=1

which can (remarkably) be computed for each value of ) from the original
fitted values and the diagonal elements Sy (4,¢) of Sy (Exercise 5.13).

The EPE and CV curves have a similar shape, but the entire CV curve
is above the EPE curve. For some realizations this is reversed, and overall
the CV curve is approximately unbiased as an estimate of the EPE curve.

5.6 Nonpafametric Logistic Regression

The smoothing spline problem (5.9) in Section 5.4 is posed in a regression
setting. It is typically straightforward to transfer this technology to other
domains. Here we consider logistic regression with a single quantitative
input X. The model is

Pr(Y = 1|X = 1)
= 2
log fr i =) = £ (5.28)
which implies
of (@)

Fitting f(z) in a smooth fashion leads to a smooth estimate of the condi-
tional probability Pr(Y = 1|x), which can be used for classification or risk
scoring.

We construct the penalized log-likelihood criterion

N

> luslogp(e:) + (1.~ ui) og(1 ~ (@] — 3 [ (7" (0

=1
N

£(f;X)

Il

[y, ;) — log( 1+e(””') ——)\ / {f"®)¥dt,  (5.30)

i=1
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where we have abbreviated p(z) = Pr(Y = 1|z). The first term in this ex
pression is the log-likelihood based on the binomial distribution (c.f. Chap
ter 4, page 98). Arguments similar to those used in Section 5.4 show thai
the optimal f is a finite-dimensional natural spline with knots at the unique
values of z. This means that we can represent f(z) = Zj\r:l N;(z)0;. We
compute the first and second derivatives

% = NT(y -p) - 2\, (5.31)
%) _ T
spoer = ~NTWN-)Q, (5.32)

where p is the N-vector with elements p(z;), and W is a diagonal matrix
of weights p(z;)(1 — p(z;)). The first derivative (5.31) is nonlinear in 6, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton—
Raphson as in (4.23) and (4.24) for linear logistic regression, the update
equation can be written

gnev = (NTWN + Q) INTwW (N@Old + Wy - P))

We can also express this update in terms of the fitted values

v = N(NTWN + Q) 'NTW (f4 + W~(y — p))
= S)"wz. (534)

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sy ,, by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here z is one-
dimensional, this procedure generalizes naturally to higher-dimensional z.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focussed on one-dimensional spline models. Each of the
approaches have multidimensional analogs. Suppose X € IR?, and we have
a basis of functions h1x(X1), k = 1,..., M; for representing functions of
coordinate X, and likewise a set of My functions hgi(X2) for coordinate
X3. Then the M; x M, dimensional tensor product basis defined by

9ik(X) = h1j(X1)hok(X2), 5 =1,..., M1, k=1,... ,M; (5.35)
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FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

can be used for representing a two-dimensional function:

M, M,

g(X) =" rgin(X). (5.36)

j=1k=1

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.
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Figure 5.11 illustrates the difference between additive and tensor produet
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T|z)] = h(x)T8 is fit to the binary re-
sponse, and the estimated decision boundary is the contour h(z)T8 = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.

One-dimensional smoothing splines (via regularization) generalize to high-
er dimensions as well. Suppose we have pairs y;, z; with z; € IRd, and we
seek a d-dimensional regression function f(z). The idea is to set up the
problem

N
min Y {ys — f(@0)}* + AIf) (5.37)
=1

where J is an appropriate penalty functional for stabilizing a function f in
IR®. For example, a natural generalization of the one-dimensional roughness
penalty (5.9) for functions on IR? is

=] LY (G + ) s

Optimizing (5.37) with this penalty leads to a smooth two-dimensional
surface, known as a thin-plate spline. It shares many properties with the
one-dimensional cubic smoothing spline:

e as A — 0, the solution approaches an interpolating function [the one
with smallest penalty (5.38)];

e as A — oo, the solution approaches the least squares plane;

o for intermediate values of A, the solution can be represented as a
linear expansion of basis functions, whose coeflicients are obtained
by a form of generalized ridge regression.

The solution has the form

N
f@)=Bo+ BTz + > ajh;(@), (5.39)

Jj=1

where h;(z) = n(||z — z;]|), and n(z) = 2?log 2°. These h; are examples of
radial basis functions, which are discussed in more detail in the next section.
The coefficients are found by plugging (5.39) into (5.37), which reduces to
a finite-dimensional penalized least squares problem. For the penalty to
be finite, the coefficients a; have to satisfy a set of linear constraints; see
Exercise 5.14.
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Additive Natural Cubic Splines - 4 df each

Training Error: 0.23
Test Error: 0.28
Bayes Error:  0.21

Natural Cubic Splines - Tensor Product - 4 df each

Training Error: 0.230
Test Error:  0.28
Bayes Error:  0.210 ¢

Kol

FIGURE 5.11. The simulation example of Figure 2.1. The upper panel shows the
decision boundary of an additive logistic regression model, using natural splines
in each of the two coordinates (total df =1+ (4—1)+ (4 —1) = 7). The lower
panel shows the results of using a tensor product of natural spline bases in each
coordinate (total df = 4 x 4 = 16). The broken purple boundary is the Bayes
decision boundary for this problem.
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FIGURE 5.12. A thin-plate spline fit to the heart disease data, displayed as a
contour plot. The response is systolic blood pressure, modeled as a function
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