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a b s t r a c t

Down syndrome, the most common single cause of human birth defects, produces alterations in physical
growth and mental retardation. If missed before birth, the early detection of Down syndrome is crucial for
the management of patients and disease. However, the diagnostic accuracy for pediatricians prior to cyto-
genetic results is moderate and the access to specialists is limited in many social and low-economic areas.
In this study, we propose a simple, non-invasive and automated framework for Down syndrome detec-
tion based on disease-specific facial patterns. Geometric and local texture features are extracted based
on automatically detected anatomical landmarks to describe facial morphology and structure. To accu-
rately locate the anatomical facial landmarks, a hierarchical constrained local model using independent
component analysis (ICA) is proposed. We also introduce a data-driven ordering method for selecting
dominant independent components in ICA. The hierarchical structure of the model increases the accuracy
of landmark detection by fitting separate models to different groups. Then the most representative fea-
tures are selected and we also demonstrate that they match clinical observations. Finally, a variety of
classifiers are evaluated to discriminate between Down syndrome and healthy populations. The best per-
formance achieved 0.967 accuracy and 0.956 F1 score using combined features and linear discriminant
analysis. The method was also validated on a dataset with mixed genetic syndromes and high perfor-
mance (0.970 accuracy and 0.930 F1 score) was also obtained. The promising results indicate that our
method could assist in Down syndrome screening effectively in a simple, non-invasive way, and exten-
sible to detection of other genetic syndromes.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Down syndrome is the most common chromosomal condition
caused by trisomy of chromosome 21. The incidence of trisomy
is influenced by maternal age and differs between populations
(between 1 in 319 and 1 in 1000 live births are trisomic for
Hsa21) (de Graaf et al., 2011). In the United States, there are one
out of 691 infants born with Down syndrome and over 400,000
people living with it (Parker et al., 2010). Down syndrome causes
lifelong mental retardation, developmental delays, heart defects,
and respiratory and hearing problems. The early detection and
intervention of Down syndrome is fundamental for managing the
disease and providing patients with lifelong medical care that
may involve physical and speech therapists, cardiologists, endocri-
nologists and neurologists.

Down syndrome may be diagnosed before or after birth. During
pregnancy, screening tests including ultrasound and blood tests
can be performed. The accuracy of screening tests is estimated to
be as low as 79% (Benn, 2002). If a screening test indicates a high
risk of Down syndrome, a more invasive diagnostic test may be
used to confirm the diagnosis. However, diagnostic tests including
amniocentesis, chorionic villus sampling and percutaneous umbil-
ical blood sampling, carry a risk of miscarriage (Skotko, 2007).
Recently, the non-invasive prenatal test (NIPT) has been intro-
duced to screen Down syndrome by performing on maternal blood
(Chiu et al., 2011), which is less invasive with high accuracy. After
birth, the initial diagnosis of Down syndrome is often based on a
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number of minor physical variations and malformations. Some
common features can be expressed as both geometry (e.g. a flat-
tened facial profile, upward slanting palpebral fissures, small ears,
protruding tongue and extremity variations) and texture (e.g.
appearance of nuchal skin and epicanthic fold) differences
(Wiseman et al., 2009). These differences may be subtle and are
influenced by the length of gestation, the effects of labor and deliv-
ery and the geographical backgrounds of the family, frequently
making a rapid, accurate diagnosis difficult.

The imprecise and non-standardized nomenclature places a
major difficulty for the communication between dysmorpholo-
gists. For infants born in non-academic centers, rural settings and
internationally, access to specialists is much more limited or not
readily available. The accuracy of a clinical diagnosis of Down syn-
drome for pediatricians prior to cytogenetic results approximates
50–60% and is likely to be lower in many instances (Sivakumar
and Larkins, 2004). The delayed diagnosis of Down syndrome
may lead to lack of bonding and delayed initiation of medical inter-
ventions (Skotko et al., 2013). The development and implementa-
tion of automated remote computer-aided tools to detect Down
syndrome and other genetic syndromes associated with facial dys-
morphosis has the potential for dramatically improving the diag-
nostic rate and providing early guidance to families and involved
professionals.

In this work, we propose a simple, automated and non-invasive
framework for Down syndrome detection based on anatomical
facial landmark analysis and machine learning techniques. The
technique requires only non-standardized frontal facial photo-
graphs of patients taken by any basic camera. A hierarchical con-
strained local model based on independent component analysis
(ICA) is introduced to locate the anatomical facial landmarks. Geo-
metric features and local texture features based on local binary
patterns (LBP) and Gabor wavelet transform are extracted to
describe both the morphological and structural variation between
Down syndrome and a healthy population. After feature fusion and
selection, several classifiers including support vector machine
(SVM), k-nearest neighbor (k-NN), random forest (RF) and linear
discriminant analysis (LDA) are trained to identify Down syndrome
cases. Leave-one-out cross-validation is performed to evaluate the
method in terms of accuracy, precision and recall. The main contri-
butions of our work lie in: (a) the proposal of a population and dis-
ease-specific hierarchical constrained local model to locate
anatomical landmarks automatically; (b) the improvement of a
data-driven independent component selection method for ICA-
based shape models; (c) the development of hierarchical strategy
of statistical models to refine the clinical relevant anatomical land-
mark detection; and (d) the combination of geometric and texture
features to accurately describe the morphology and structure of
genetic syndromes.
2. Related work

2.1. Genetic syndrome detection

Photogrammetry could serve as a readily available and power-
ful tool for automated assessment of facial dysmorphology.
Recently, two-dimensional (2D) and three-dimensional (3D) facial
image analysis methods have been used for syndrome detection.
For 2D image analysis, the authors in (Loos et al., 2003) investi-
gated the disease-specific facial patterns for ten syndromes,
excluding Down syndrome, using Gabor wavelet features. Their
latest study (Boehringer et al., 2011) classified 14 syndromes with
21% accuracy. However, the method did not discriminate the syn-
dromes from a healthy population and it requires manually labeled
landmarks. Saraydemir et al. (2012) applied the Gabor wavelet
transform globally to manually cropped face images. Principal
component analysis (PCA) and LDA were used for feature dimen-
sion reduction. The classification accuracy achieved by k-NN clas-
sifier and SVM were 96% and 97.3%, respectively. But the method
also needs manual image standardization including rotation and
cropping. Moreover, the dataset only consisted of 15 Down syn-
drome and 15 normal cases, a small database for robust results.
In (Burçin and Vasif, 2011), the authors separated Down syndrome
from a healthy group using LBP and template matching. Still man-
ual cropping was required in pre-processing. Moreover, they
applied LBP operator on non-overlapped blocks covering the whole
face which may not capture the local texture features at clinical
relevant facial landmarks.

Besides 2D image analysis, 3D facial morphology modeling has
been investigated to assist the diagnosis in dysmorphology
(Aldridge et al., 2005; Hammond et al., 2001, 2004; Wilamowska
et al., 2009). Hammond et al. investigated the 3D facial morphol-
ogy modeling for Williams, Smith-Magenis, 22q11 deletion and
Noonan syndromes (Hammond et al., 2004). 3D facial images were
captured with commercial photogrammetric devices (3dMD and
Surfirm), and each image was manually annotated with 3D land-
marks. Then dense surface models were built with PCA. For dis-
crimination testing, closest mean, LDA and SVM were adopted.
The discrimination performance for the ten pairwise control-syn-
drome and syndrome-syndrome comparison ranged from 87% to
98%. In (Wilamowska et al., 2009), Wilamowska et al. presented
a method to classify 3D face shape in 22q11.2 deletion syndrome
given a set of labeled 3D meshes acquired from stereo imaging of
heads. The accuracy of the classification performed on feature vec-
tors comprised of the PCA coefficients of these representations was
76%. All the above 3D studies did not investigate Down syndrome.
In addition, they are not automatic; all require manual landmark
placement. Most importantly, the use of 3D digital photogrammet-
ric image acquisition systems is costly and may not be available in
many clinical centers.

Our group has also investigated Down syndrome detection
using machine learning techniques (Zhao et al., 2013a,b,c). In our
prior work, we showed the effectiveness of geometric and local
texture features. This work is a continuation and significant exten-
sion of our previous work (Zhao et al., 2013a) in the following
aspects: (1) this paper completes the compact description in our
conference paper by providing details of derivatives of our method;
(2) we provided additional comparisons with the most popular
method AAM in terms of point-to-point and point-to-curve dis-
tance; (3) Gabor wavelet features were also analyzed and com-
pared with LBP in terms of accuracy and F1 score; (4) the
selected geometric and texture features were analyzed from clini-
cal perspective; (5) the proposed method was validated on a larger
Down syndrome dataset, as well as an additional mixed syndrome
dataset; and (6) the advantages and shortcomings of the proposed
method were discussed in detail.

2.2. Shape appearance models

Conventional statistical models such as active shape model
(ASM) (Cootes et al., 1995), active appearance model (AAM)
(Cootes et al., 1998) and other variants (Milborrow and Nicolls,
2008; Seshadri and Savvides, 2009; Zhou et al., 2010) have been
widely applied in landmark detection and image segmentation
(Heimann and Meinzer, 2009; Gerig et al., 2002).

The profile of a landmark in ASM is intensity values along a line
perpendicular to the tangent of the landmark, which is not suffi-
cient to describe the intensity information around the landmark.
In addition, ASM does not consider the relationship between shape
and appearance models. To overcome these limitations, AAM was
proposed by (Cootes et al., 1998).
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Similar to AAM, the Constrained Local Model (CLM) first pro-
posed by Cristinacce and Cootes (2008) also uses a template
appearance model, but with a more robust constrained search
technique. The search is performed in a local region at each land-
mark by jointly optimizing the local appearance and shape con-
straints. It has demonstrated good performance in non-rigid
object alignment/tracking. Since its emergence, few variants of
CLM have been developed using different optimization methods
(Saragih et al., 2009; Yang et al., 2008). CLM has several advantages
over AAM. First, CLM is discriminative as well as generative to
unseen appearance variations. Second, CLM offers greater invari-
ance to global illumination variation and occlusion. Importantly,
CLM models the object as an ensemble of independent individual
experts. Finally, it does not require complicated piece-wise affine
texture warp that may be prone to errors. Our method is different
from the previous work (Saragih et al., 2009; Yang et al., 2008)
because of its joint quadratic optimization of SVM local texture
model and ICA shape model in landmark coordinate domain (shape
parameter in previous works). Lucey et al. used a similar strategy
for optimization in (Lucey et al., 2009). The main difference
between their work and ours is that we used the reconstruction
error of ICA as the shape constraints instead direct Gaussian
assumption on the shape parameters.

In all the aforementioned models, point distribution models
(PDM) use PCA to describe shape variations of the training data
conventionally. However, such a PCA-based shape model assumes
a Gaussian distribution of input data which is not often valid and
may lead to an inaccurate statistical description of shapes and gen-
eration of implausible shapes. Furthermore, the principal compo-
nents (PCs) of PCA tend to represent global shape variations:
changing the parameter of a PC may deform the entire extent of
shape (shown in Fig. 1). The accurate localization of anatomical
landmarks is required in certain applications, such as medical
image analysis and expression recognition. The PCA-based shape
model fails to capture localized deformations in such situations.
To address the above problems, localized component analysis,
describing surface shape variation in an ensemble of objects using
a linear subspace of spatially localized shape components, was
investigated in statistical shape models in (Alcantara et al., 2009;
Giessen et al., 2011). But the localized shape components anlaysis
is parametric and the parameter setting is not trivial for modeling
the shape variations. Independent Component Analysis (ICA) is
considered as another alternative method to build a statistical
shape model. To the best of our knowledge, previous work related
to constructing statistical models using ICA is scarce. Different ICA
algorithms and independent component (IC) selection methods
were compared for statistical shape modeling (Uzümcü et al.,
2003b). The experimental results showed that the different ICA
algorithms yielded very similar results and the ordering according
Fig. 1. Comparison of shape deformation when changing a component of PCA and
ICA, respectively. The first shape parameter was set to 2r1 and jxj=2 for PCA and
ICA, respectively, and all other shape parameters were set to 0. The whole shape
deforms when a principal component changed in the PCA-based model, while the
ICA-based model allows for more local deformation (e.g. the shape of eyebrows and
the tip of nose).
to the locality of the shape variations achieved the best selection
and classification performance. However, their criterion of sorting
ICs is only based on empirical local peaks. In (Uzümcü et al.,
2003a), the authors compared the ICA and PCA in AAM for cardiac
MR segmentation. The ICA-based AAM outperformed PCA-based
model in terms of border localization accuracy. But this technique
did not present how to select a relevant subset of ICs. The ICA-
based models were also investigated in 3D and 4D cardiac MR
images (Faghih Roohi and Aghaeizadeh Zoroofi, 2012; Lötjönen
et al., 2004; Suinesiaputra et al., 2009; Suinesiaputra et al., 2011)
adopting the ICA-based statistical models proposed in (Uzümcü
et al., 2003b). Our proposed ICs selection criterion uses entropy
and interquartile range to measure the sample variation locality
and adds a data-driven selection of IC subsets according to the cri-
terion (non-parametric sorting of ICs). Additionally, we use ICA in a
hierarchical model to take advantage of the local modeling power
of ICA.
3. Methods

The framework of the proposed method, illustrated in Fig. 2,
consists of landmark detection, feature extraction and selection,
classification and evaluation.

3.1. Landmark detection with hierarchical constrained local model

3.1.1. Constrained local model
The procedure of locating landmarks using shape constrained

local texture model (CLM) can be divided to model building and
searching stages that will be described in detail.

3.1.2. Building CLM with ICA
A CLM consists of a statistical shape model and a local texture

model. The shape model defines the plausible shape space and
describes the shape variations of the training samples. The local
texture model describes how the local region around each land-
mark appears. Combining these two models, both the shape mor-
phology and local texture of a face are characterized.

3.1.2.1. ICA-based statistical shape model. A shape represented by n
landmarks in two dimensions is denoted as
x ¼ ½x1; y1; x2; y2; . . . ; xn; yn�

T . To compensate for translation, rota-
tion and scaling differences between the shape samples, all shapes
are aligned using generalized Procrustes analysis by minimizing
the squared distance between corresponding landmarks in the
shape samples. The mean shape of the training set is calculated
and subtracted from the aligned shapes represented by x, where
x now contains the new zero-mean coordinates of all shape sam-
ples resulting from alignment. Then ICA is applied to the aligned
training shapes to obtain the modes of shape variation. The shape
matrix X containing all centered shapes in the training set can be
expressed as a mixture of independent components X ¼ A � S,
where A is the matrix containing mixing parameters and S the
independent components (ICs). It can also be written in a vector
format x ¼

Pn
i¼1aisi, where ai is the columns of mixing matrix A

and si are the ith IC. After estimating the matrix A, the de-mixing
matrix W (W ¼ A�1) and independent components can be com-
puted by S ¼W � X.

ICA is defined as a method that finds a linear transformation
maximizing the non-Gaussianity of S. The de-mixing matrix can
be computed by maximizing some measure of independency. In
this study, we use the Joint Approximated Diagonalization of
Eigenmatrices (JADE) method (Cardoso, 1999) for ICA. The JADE
algorithm is based on the joint diagonalization of the cumulant
matrices. All cumulants of order 2 and 4 are involved and a joint
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diagonalization is performed with a Jacobi technique. The JADE
method is non-parametric and robust (Skotko et al., 2013).

For PCA, the eigenvectors are sorted naturally according to their
corresponding variances (eigenvalues), while for ICA, the variances
and the order of ICs are not determined naturally based on the var-
iance of the ICA samples. We propose to sort the columns of the
mixing matrix A based on the non-parametric estimate of the sam-
ple variance and the basis locality. First the shape matrix X are pro-
jected onto each ai. A normalized cumulative histogram (CH) is
computed from these projections. The interquartile range (IQR)
(Upton and Cook, 1996), a measure of statistical dispersion, is
defined as IQR ¼ Q3 � Q1, where Q 3 ¼ CH�1ð0:75Þ and
Q1 ¼ CH�1ð0:25Þ. The statistical dispersion of the projections is
determined by the range approximating �3r range of normal dis-
tribution. The values out of this range, considered as outliers, are
filtered out to obtain robust ICs selection. The dispersion measure
can be regarded as a robust non-parametric estimate of sample
variance along ICs. The shape deformation along ai to the limit
�jxij=2 is given by the norm of inner product of ai and
xi;vi ¼ jai �xij. The maximum value of vi determines the signifi-
cance of the peak; the entropy HðviÞ characterizes the locality of
ICs and the dispersion range xi describes the shape variance. With
these three factors, the criterion C to order the ICs and correspond-
ing columns of the mixing matrix is then determined by
C ¼ xi � vmax=H v ið Þ; ð1Þ
where vmax is the maximum value of vi and HðviÞ is the entropy of
vi. For modes that describe relevant independent directions in the
training set, the variations are localized and have large peaks, there-
fore have large values. While for noisy modes, the variations are rel-
atively small and not localized, thus have small values. After sorting
the ICs with this criterion, we select dominant ICs by removing
noisy ICs with very small C values. All kept ICs have reconstruction
error smaller than a threshold (0.001 in this study). Fig. 3 compares
the first three principal modes of PCA and ICA. Please note that the
PCA modes depict only global variations, while the ICA modes high-
light local variations. In particular, the first two modes of PCA pres-
ent the head poses (up–down, left–right), while the ICA modes
highlight the local variations around major facial features (e.g.
mouth and nose).
3.1.2.2. Local texture model. The local texture model describes the
appearance of the local patch around each landmark. It is built
using a patch descriptor and a support vector machine (SVM)
(Cortes and Vapnik, 1995) with a linear kernel due to its computa-
tional advantages. For each landmark per training image, we
extract m ðm ¼ 25Þ square patch samples throughout the training
set as training data for SVM, including 12 negative and 9 positive
samples. The 9 positive samples are extracted centered at each
landmark with error tolerance up to 3 pixels, and the 12 negative
samples include 8 samples randomly sampled in the region shifted
away from the ground truth by ten pixels and 4 samples with con-
stant intensity values (intensity = f0;128;255g) to make the learn-
ing and search robust. All m patches have the same size (for
512� 512 pixels images, the size of patch is chosen empirically
as 40� 40 pixels that contain sufficient information of a land-
mark). The descriptor for each patch is chosen as the oriented his-
togram of gradient (HoG) (Dalal and Triggs, 2005) with the same
dimensions N (N ¼ 576 for 40� 40 patches). For HoG descriptor,
the parameters including number of orientation bins, the cell size
and the block size were set to 9, 8 and 2, respectively. Thus for
40� 40 patches, there are 16 blocks; and for each block, the histo-
gram dimension is 36 (N ¼ 16� 36 ¼ 576). Thus we obtain m
training vectors g 1ð Þ;g 2ð Þ; . . . ;g mð Þ� �

and each training sample

g ið Þ ¼ g ið Þ
1 ; g

ið Þ
2 ; . . . ; g ið Þ

N

h iT
; i ¼ 1;2; . . . ;m. Each training vector is

assigned an output value for SVM, yðiÞ ¼ �1; 1f g; i ¼ 1;2; . . . ;m. A
SVM is trained for each landmark. The decision function of linear
SVM can be represented by an inner product of training data and
the support vectors

f gðiÞ
� �

¼
XNS

j¼1

aj gj; g
ðiÞ� �
; ð2Þ

where gj is a support vector, aj the weight of the support vector and
NS the number of support vectors. aj is solved by standard quadratic
programing technique (Cortes and Vapnik, 1995). For CLM, the deci-
sion function of linear SVM can also be written as a linear combina-
tion of the input vector

f gðiÞ
� �

¼ uT � gðiÞ; ð3Þ

where uT ¼ u1;u2; . . . ;uN½ � represents the weight for each input
pixel calculated by u ¼

PNS
j¼1ajgj. The reason of choosing linear



Fig. 3. The first three principal modes for PCA (a–c) and ICA (d–f) trained on both the Down syndrome and healthy groups. Note the global vs. local variations expressed by
PCA and ICA, respectively.
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SVM is that uT � gðiÞ can be pre-computed rather than evaluated sep-
arately for each example. Therefore, it reduces the computational
complexity and time dramatically by avoiding sliding window
processing.

To obtain the response image of the patch, an approximate
probabilistic output of SVM is computed by fitting a logistic regres-
sion function (Bishop, 2007) to the binary output of SVM

Pr yðiÞ ¼ 1jf gðiÞ
� �� �

¼ 1
1þ exp uf gðiÞð Þ þ vð Þ ; ð4Þ

where u and v are learned through a cross-validation.

3.1.3. Searching landmarks with CLM
Using CLM to search the optimal landmark locations is equiva-

lent to estimating the landmark coordinates by maximizing the
probabilities outputted by SVM with shape constraints. First an ini-
tial estimation of the landmark locations is made via a similarity
transformation of the mean shape. Then each landmark is searched
in the local region of its current position using the local texture
model. We denote the SVM response image with Rðx; yÞ that is fit-
ted with a quadratic function

rðx; yÞ ¼ aðx� x0Þ2 þ bðy� y0Þ
2 þ c; ð5Þ
Fig. 4. Examples of local patch response map: (a) shows the local patches around land
column of (c) are the raw response map Rðx; yÞ from (b) and the right column of (c) are t
fitting the quadratic function to (b). The red crosses in (b), (c) and (d) illustrate the ground
is referred to the web version of this article.)
where c ¼ ða; b; cÞ are the quadratic function parameters and ðx0; y0Þ
is the center point of the quadratic function. It can also be written in
matrix format

rðx; yÞ ¼ zUzT � 2CzT þ ax2
0 þ by2

0 þ c; ð6Þ

where z ¼ ½x; y�;U ¼ ½a;0; 0; b� and C ¼ ½ax0; by0�. The parameters are
solved by minimizing the sum-of-the-squares objective function

c� ¼ arg min
c¼ða;b;cÞ

X
x;y

Rðx; yÞ � rðx; yÞ½ �2: ð7Þ

Finally, the landmark positions are estimated by jointly opti-
mizing the quadratic function and the shape reconstruction error
using ICA. The joint objective function is given by

x� ¼arg max
x

xTUx� 2Cx� b x� AWxð ÞT x� AWxð Þ;

subject to�x=2 < W � x < x=2; x 2 l;u½ �;
ð8Þ

where U ¼ diag U1; . . . ;Unð Þ;C ¼ C1; . . . ;Cn½ �;x is the dispersion
range of the projections and l;u are the lower and upper boundary
of x determined by the search region. The objective function is
solved by a standard quadratic optimization method. In a PCA-
based shape model, the shape parameters are usually limited by
marks; (b) shows the local search response map obtained by linear SVMs; the left
he fitted quadratic maps rðx; yÞ from (d); (d) shows the estimated response map by
truth. (For interpretation of the references to colour in this figure legend, the reader
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three times square root of eigenvalues. To make a fair comparison,
the range of ICA shape parameters � xij j=2; xij j=2½ � covers the same
amount of sample variance as that by 3r range with PCA given a
normal distribution by recalculating x to cover 99.7% sample vari-
ance along ICs. Fig. 4 shows an example of local texture model in the
search process.

To make the search more efficient and robust, a three-level
multi-resolution search is performed. Before the search begins,
we build an image pyramid (subsampled by a factor of two) and
repeat the CLM search at each level, from coarse resolution
(128� 128 pixels) to fine resolution (512� 512 pixels). The initial
estimation for the first search is the shape generated from the
Viola-Jones face detector (Viola and Jones, 2001). The initial esti-
mation at each subsequent level is the best shape found by the
search at the level below.
3.2. Hierarchical constrained local model

The differences between Down syndrome and a healthy popula-
tion mainly lie in the inner face features around the mouth, nose
and eyes. Fig. 5 shows the mean shape comparison of the normal
model trained with the healthy group and the Down syndrome
model trained with Down syndrome cases. From the point-wise
mean shape difference we can see that the nose and mouth regions
show bigger differences. So it is desirable to build separate models
for the Down syndrome and healthy groups to refine the locations
of inner face anatomical landmarks.

We propose a hierarchical constrained local model (HCLM) con-
sisting of two levels. The first level CLM is trained using the full
landmark set and all images including all groups (normal and
Down syndrome). It roughly locates all of the facial landmarks.
For the second level, separate CLMs are trained using inner facial
anatomical landmarks (landmark subset on the mouth, nose and
eyes) for respective groups.

The first level model is trained using the total M training sam-
ples. Its shape and local texture model are built with the full land-
mark set xF containing nF landmarks. Suppose there are K groups
and for each group there are MðiÞ training samples i ¼ 1; . . . ;K. Thus
the second level consists of K CLMs that are trained with landmark
subset xSðxS � xFÞ containing nS landmarks. Using this hierarchical
model, the first level helps to locate landmarks using the power of
a larger and general dataset (Down syndrome + healthy). Then the
second level refines the landmarks using best fitted models of
anatomy and disease (Down syndrome vs. healthy).
Fig. 5. The mean shape comparison on inner face landmarks between the Down syndrom
the mean shapes qualitatively, where the ellipses represent the point distribution (cova
facial regions. Nose and mouth regions present bigger differences.
The landmarks are first estimated using the first level CLM. The
results of the landmark subset from the first level serve as the ini-
tialization of the second level search. Then the shape parameters
are estimated using the landmark subset xS resulting from the sec-
ond level search. Finally, the full landmark set xF is re-estimated
using the updated shape parameters. The above searching process
is repeated for all K CLMs in the second level. The model selection
is based on the assumption that the sample distribution of separate
groups should be different. To validate the assumption, we per-
formed paired Hotelling’s T-square test (Hotelling, 1992) on Down
syndrome data and normal data, and the difference of these two
samples were significant (p ¼ 0:047). The best fitted model is
selected as the one whose result is closer to its own mean shape
and holds smaller changes compared with the first level search
results

CLM� ¼ arg min
CLM;i¼1;...;K

f ðCLMðiÞÞ � �xðiÞ
��� ���;

subject to f CLM ið Þ
	 


� x0
��� ��� < d; for i ¼ 1; . . . ;K:

ð9Þ
3.3. Feature extraction, selection and classification

Patients with Down syndrome present special facial morphol-
ogy that relates both to shape or geometry (e.g. upward slanting
eyes, small nose and wide-opened mouth) and texture (e.g. flat-
tened philtrum and prominent epicanthic folds) (Sivakumar and
Larkins, 2004). To describe these two types of information, geomet-
ric and texture features are extracted on the registered patient
image which is aligned to a reference image using Procrustes anal-
ysis (Gower, 1975) to remove the translation, in-plane rotation and
scaling. Geometric features are defined via interrelationships
among anatomical landmarks to incorporate clinical criteria for
Down syndrome diagnosis. Geometric features include Euclidean
distances between the landmarks and corner angles spanned by
the landmarks, shown in Fig. 6(a). The Euclidean distances can be
divided to horizontal and vertical lines according to their direc-
tions. The horizontal and vertical lines are both normalized by their
baselines, respectively. The horizontal baseline is the distance
between the left corner of left eye and the right corner of right
eye (the width of the face), and the vertical baseline is the vertical
distance between the eyes and the lower lip (the height of the
face). The normalized geometric features are invariant to scale,
translation and rotation. The angles are analyzed via linear statis-
tics despite the non-linear nature as all of them are acute angles
e and healthy groups: (a) shows the definition of inner face landmarks and compares
riance) for each landmark; (b) shows the mean shape differences around different



Fig. 6. Feature extraction: (a) The graphic definition of geometric features; the blue
lines are normalized by the vertical or horizontal baseline and the green circles
illustrate the location of corners; (b) shows the region of interests (blue squares) of
inner face landmarks for local texture feature extraction. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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(less than 90 degree) according to their definitions; therefore, the
angle features are monotonic in our application. There are a total
of 27 geometric features.

Two types of local texture features are extracted to delineate
facial features. One is based on LBP histogram (Ojala et al., 1996,
2002), and the other is based on the Gabor wavelet transform
(Ma and Manjunath, 1995). For LBP, we use the uniform LBP
(Ojala et al., 2002) in which the number of neighboring sample
points P on a circle of radius R is not limited. In this study, we
set P ¼ 8 and R ¼ 1 We also tested other settings of P and R (e.g.
P ¼ 16;R ¼ 2), however the performance of the technique was
inferior. Thus in the following experiments we use P ¼ 8 and
R ¼ 1 setting for LBP-based texture features.

To extract local texture features, a LBP histogram is first com-
puted from a square region of interest (ROI) around each of the
22 inner facial landmarks (on mouth, nose and eyes, Fig. 6). The
LBP histogram contains information about the distribution of the
local micro-patterns, such as edges, spots and flat regions. Then
six first-order statistical measurements of the ROI LBP image are
computed from the histogram, which are the mean, variance,
skewness, kurtosis, energy and entropy. Finally, the feature vectors
in all ROIs are concatenated to form the LBP-based local texture
features for the image. Thus, the local texture features also contain
the spatial information of the texture. There are a total of 132 LBP-
based texture features.

Besides LBP-based texture features, we also present texture
information with the Gabor wavelet because the Gabor features
are robust against local distortions caused by variance of expres-
sion, illumination and pose (Saraydemir et al., 2012). Gabor filters
provide the optimal localization of spatial and frequency informa-
tion and have been widely applied to face recognition (Jadhav and
Holambe, 2009; Srinivasan and Ravichandran, 2013). In this study,
five scales and eight orientations are used to extract features,
which lead to 40 Gabor wavelets. The 880-dimensional Gabor jet
is generated by concatenating the magnitudes of 40 complex-val-
ued Gabor features on each of the 22 inner facial landmarks. More
details on the Gabor wavelet transform can be found in (Ma and
Manjunath, 1995; Okada et al., 1998).

The geometric features are concatenated with the LBP-based
texture features to 159 combined features (Geo + LBP), and with
the Gabor jet to 907 combined features (Geo + Gabor). Feature
selection is performed using the method in (Cai et al., 2010). The
method is based on manifold learning and L1 regularized models
for subset selection. Specifically, the method selects the features
such that the multi-cluster structure of the data is well preserved.
By using spectral analysis techniques, the feature selection method
measures the correlations among different features without label
information. The corresponding optimization problem only
involves a sparse eigen-problem and a L1-regularized least square
problem, thus can be solved easily. The optimal dimension for fea-
ture space is found based on maximizing the area under the recei-
ver operating characteristic (AUROC) curves by empirical
exhaustive search.

After feature extraction and selection, we compare various clas-
sifiers for Down syndrome detection, including linear, non-linear
and tree-structure classifiers. For linear classifiers, we use linear
SVM (Cortes and Vapnik, 1995) and LDA (Mika et al., 1999). For
non-linear ones, SVM with radial-basis function (RBF) kernel and
k-NN (Denoeux, 1995) are adopted. We also utilize a state-of-
the-art tree-structure classifier, the random forests (RF)
(Breiman, 2001). The performance of these classifiers is tight to
the distribution of data. Since the high dimensional features cannot
be simply estimated, the performances of these classifiers may
provide us some information of the distribution of features.

SVM is a robust and powerful classifier that deals well with
high-dimensional data. It uses a kernel function to map the data
into a high-dimensional feature space. When the kernel function
is a first-order polynomial, the SVM behaves as a linear classifier,
while when the kernel function is RBF, the SVM becomes a non-lin-
ear classifier. LDA is another commonly used linear classifier that
maximizes the ratio of between-class variance to within-class var-
iance in the data thereby guaranteeing maximal separability. LDA
can easily handle cases where the within-class frequencies are
unequal. Alternatively, a k-NN classifier is a simple, stable and effi-
cient non-linear classifier that is based on non-parametric density
estimation. It assigns a label to a sample from the predominant
label among its k nearest neighbors. Differently, the random forest
is an ensemble classifier that consists of multiple decision trees.
Each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all the trees in the
forest. Random forest is one of the most accurate learning algo-
rithms and robust with respect to noise. The parameters for the
SVM (C; r), k-NN (k) and RF (the number of trees) are found opti-
mally by grid search (Bergstra and Bengio, 2012).
4. Experiments

4.1. Data and evaluation metrics

The performances of AAM, PCA-based CLM, ICA-based CLM and
ICA-based HCLM were compared on the Down syndrome dataset
containing 130 frontal facial images from 130 different subjects
(one image per subject), 50 of who are Down syndrome pediatric
patients and 80 are healthy individuals. Photographic data acquisi-
tion and processing with a variety of cameras and under variable
illumination, expression and poses was approved by the Institu-
tional Review Board (IRB) and Children’s National Medical Center.
The subjects are from multiple ethnicities including 98 Caucasian,
20 African American and 12 Asian and both genders (86 males and
44 females). The age of patients varies from 0 to 3 years. Leave-
one-subject-out experiments were conducted on the DS dataset
as a single procedure throughout the framework including SVM
texture model training, group CLM learning, feature selection and
classification. As there is one image per subject in our dataset,
leave-one-subject-out, same as leave-one-out cross-validation,
leaves one subject out each time for testing and the rest of subjects
are used for training. This makes sure that the test face is not
known by the model.

We also validated the method on a mixed syndromes dataset
including 24 images from 24 different subjects with 14 dysmorphic
syndromes including Klinefelter syndrome, Charge syndrome, Fetal



Table 1
Inner facial landmark detection error normalized to the distance between pupils. Bold
values are the maximum values of the specific metric.

Model Point-to-point Point-to-curve

AAM 0:085� 0:071 0:065� 0:064
PCA-based CLM 0:036� 0:037 0:026� 0:035
ICA-based CLM 0:034� 0:030 0:024� 0:025
ICA-based HCLM 0:031� 0:030 0:021� 0:025
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alcohol spectrum disorder, Facio-Auriculo-Vertebral dysplasia,
Stickler syndrome, Treacher Collins syndrome, Noonan syndrome,
Williams syndrome, Velo-Cardio-Facial syndrome, Trisomy 18,
Beckwith Wiedemann syndrome, Rubinstein-Taybi syndrome,
Waardenburg syndrome and Cerebral Gigantism (Sotos syndrome)
(Swarts, 2009). There were 16 Caucasian, 6 African American and 2
Asian patients aged from 0 to 5 years. As control group, we use the
same 80 healthy subjects described before.

For the first level CLM, we define 44 anatomical landmarks to
cover the entire face including eyes (10 landmarks), nose (13 land-
marks), mouth (10 landmarks) and face contour (11 landmarks).
For the second level, 22 landmarks are retained to cover the inner
facial features (shown in Fig. 5(a)).

For landmark detection evaluation, two error measures are
computed. A distance is computed between points using auto-
mated methods and manually labeled ground truth and then nor-
malized by the distance between the two pupils. This metric is
used as the point-to-point error measure

e ¼ 1
N

XN

i¼1

1
NI

X
x2I

d ~x; xð Þ=dn

 !
; ð10Þ

where I is the set of inner face landmarks (around the eyes, nose
and mouth), dð~x; xÞ is the Euclidean distance between inner face
landmarks located by the automatic search and the corresponding
ground-truth landmarks placed manually by experts, dn is the dis-
tance between the two pupils as normalizing factor, and N is the
number of images.

Another error measure, the point-to-curve error, is calculated as
the distance from the landmarks obtained by the automated
method perpendicularly to the piece-wise linear curve defined by
the ground truth, which is also normalized by the distance
between the pupils. The curve is estimated by a linear chordal
approximation (Horst and Beichel, 1997).

For Down syndrome and mixed syndrome detection, the con-
ventional accuracy and F1 score (the harmonic mean of precision
and recall) are used for evaluation.

Accuracy ¼ tpþ tn
tpþ tnþ fpþ fn

; ð11Þ

F1 ¼
2 � tp

2tpþ fpþ fn
; ð12Þ

where tp; tn; fp, and fn correspond to true positive, true negative,
false positive, and false negative, respectively.

4.2. Landmark detection

In all experiments, we first detected the face, eyes and tip of the
nose in the image using the Viola-Jones face detector (Viola and
Jones, 2001) to initialize the first level HCLM. The accuracy of face
detection was 0.987. The images in the training data have various
resolutions. In pre-processing, all images were cropped to
512� 512 pixels keeping the detected faces in the center of the
image and leaving adequate margins (1=6 of the image size). The
local patch sizes were set to 40 and 32 pixels for the first and sec-
ond level HCLM, respectively. The linear SVM parameter C in local
texture model was selected as 0.005. The shape regularization
parameter b was empirically set to 0.01.

We compared four statistical models: AAM, PCA-based CLM,
ICA-based CLM and ICA-based HCLM. To learn the appearance
model used for this comparison, AAMs were built to cover 99.7%
shape variance in the training samples. In this study, 47 ICs were
selected for Down syndrome dataset and 23 ICs for mixed syn-
drome dataset. Table 1 shows the point-to-point and point-to-
curve landmark detection errors. The significance was computed
using the Wilcoxon rank-sum test (Hollander and Wolfe, 1999)
that is a non-parametric test for two populations when samples
are independent. It can be seen that the ICA-based HCLM achieved
the best performance in terms of both point-to-point and point-to
curve errors. The performance of all CLM methods is significantly
better than AAM (p < 0:001). A significant improvement was also
recorded by using ICA-based HCLM vs. PCA-based CLM
(p ¼ 0:001 for point-to-point error and p < 0:001 for point-to-
curve error), and by using ICA-based HCLM vs. CLM (p ¼ 0:002
for point-to-point error and p ¼ 0:003 for point-to-curve error).
An improvement (not significant, p ¼ 0:89 for point-to-point error
and p ¼ 0:74 for point-to-curve error) was also noted when ICA
was used instead of PCA with CLM.

Fig. 7 shows the normalized errors per region and per group.
ICA-based HCLM achieved the best performance for both 22 inner
facial landmarks and all 44 facial landmarks. AAM performed
poorly on the Down syndrome group that has large shape varia-
tions. As seen in Fig. 7(b), the advantage of our method is particu-
larly obvious on diseased populations where there is large
variability in the facial model. The cumulative distributions of error
measures are shown in Fig. 8.
4.3. Genetic syndrome detection

The results below are obtained using ICA-based HCLM, the
method that performing best on landmark detection. For feature
selection, we use selected features for linear SVM as examples.
Table 2 shows the automatically selected and ranked geometric
features for Down syndrome and mixed genetic syndromes detec-
tion. The selected features are consistent with the clinical symp-
toms of Down syndrome, for example, the top three ranked
features of Down syndrome correspond to the clinical findings of
Down syndrome: upward slanting eyes, small nose and narrow
palpebral fissure.

Leave-one-subject-out cross-validation was performed for
Down syndrome and mixed syndromes detection, respectively.
As there is only one photo for each subject in the dataset, the
experiments are also leave-one-subject-out. Tables 3 and 4 show
Down syndrome detection results. The highest accuracy of 0.967
was achieved by the combined features with geometric and Gabor
jet (Geo + Gabor) using either SVM with RBF or LDA. The highest F1

score of 0.956 was achieved by the combined features with geo-
metric and LBP-based texture features (Geo + LBP) using LDA. The
sensitivity and specificity of the Geo + Gabor with SVM-RBF
method to detect Down syndrome (see Table 3) were 0.977 and
0.962, respectively, at the ROC point of highest accuracy. Similarly,
Geo + Gabor with LDA achieved sensitivity and specificity of 1.000
and 0.949, respectively. All the metrics improved when combining
geometric and texture features, but not significantly using Fishers
exact test (p ¼ 0:058 for combined features vs. geometric features)
(Fisher, 1922). However, all classifiers achieved competitive per-
formance. The ROC curve of different features with LDA is shown
in Fig. 9(a). The AUROC was 0.976, 0.972, 0.990, 0.990 and 0.991
for geometric, LBP-based texture, combined features with geomet-
ric and LBP-based texture, Gabor jet and combined features with
geometric and Gabor jet, respectively.



Fig. 7. Landmark detection errors: (a) The average normalized errors for 22 inner facial landmarks and 44 all landmarks, respectively; (b) the average normalized errors for
the healthy group, Down syndrome and mixed syndromes, respectively. The ICA-based HCLM outperformed AAM, PCA- and ICA-based CLM in terms of both point-to-point
and point-to-curve error.

Fig. 8. The cumulative error distribution for AAM, PCA-, ICA-based CLM and ICA-based HCLM: (a) point-to-point error (b) point-to-curve error.

Table 2
The selected top ranked geometric features and their clinical relevance.a

Geometric features Feature selection and ranking

Down syndrome Mixed syndromes

Width of left eye 17 –
Inner eye distance 8 5
Width of right eye 19 4
Width of mouth 12 10
Left palpebral fissure 14 1
Right palpebral fissure 3 –
Length of upper nose 2 –
Length of lower nose 4 2
Length of philtrum 7 –
Thickness of upper lip 5 –
Openness of mouth 18 –
Thickness of lower lip 16 9
Orientation of left eye 6 –
Orientation of right eye 1 –
Left corner angle of right eye 10 –
Right corner angle of right eye – 3
Upper corner angle of nose 13 7
Left corner angle of nose 11 –
Right corner angle of nose – 6
Outer left corner angle of mouth 9 –
Inner left corner angle of mouth 15 –
Inner right corner angle of mouth – 8

a The first column presents the anatomical description of the selected geometrics
features. The second column denotes the ranks of the 19 selected features for Down
syndrome detection. The third column denotes the ranks of the 10 selected features
for the detection of mixed genetic syndromes.

Table 3
Accuracy of Down syndrome detection using different features and classifiers. Bold
values are the maximum values of the specific metric.

Accuracy Geometric LBP Geo+LBP Gabor Geo+Gabor

SVM-RBF 0.934 0.926 0.959 0.934 0.967
Linear SVM 0.950 0.934 0.959 0.909 0.950
k-NN 0.901 0.934 0.901 0.917 0.926
RF 0.868 0.884 0.909 0.909 0.934
LDA 0.901 0.917 0.959 0.950 0.967

Table 4
F1 score of Down syndrome detection using different features and classifiers. Bold
values are the maximum values of the specific metric.

F1 score Geometric LBP Geo+LBP Gabor Geo+Gabor

SVM-RBF 0.905 0.894 0.943 0.905 0.955
Linear SVM 0.929 0.902 0.943 0.874 0.930
k-NN 0.857 0.900 0.860 0.881 0.892
RF 0.784 0.829 0.867 0.864 0.905
LDA 0.867 0.889 0.945 0.929 0.956
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Tables 5 and 6 show the experimental results for detecting
mixed syndromes. The highest accuracy of 0.970 was achieved by
the combined features with geometric and LBP-based texture fea-
tures (Geo + LBP) using linear SVM. The highest F1 score 0.930 was
obtained by the combined features with geometric and LBP-based
texture (Geo + LBP) using linear SVM. The sensitivity and specific-
ity of the Geo + LBP with linear SVM method to detect mixed
genetics syndromes (see Table 5) were 0.909 and 0.987, respec-
tively, at the ROC point of highest accuracy. As with the Down syn-
drome data, all the metrics improved when combining geometric
and texture features. Significant improvements, computed with
linear SVM using Fishers exact test (Fisher, 1922), were recorded
by using LBP-based texture vs. geometric features (p ¼ 0:04), and
by using combined (Geo + LBP) vs. geometric features
(p ¼ 0:007). Performances with other features were not significant.



Fig. 9. The ROC curves of different features (a) using LDA for Down syndrome and (b) using linear SVM for mixed syndrome detection, respectively.

Table 5
Accuracy of mixed syndromes detection using different features and classifiers. Bold
values are the maximum values of the specific metric.

Accuracy Geometric LBP Geo+LBP Gabor Geo+Gabor

SVM-RBF 0.840 0.930 0.940 0.930 0.920
Linear SVM 0.850 0.930 0.970 0.920 0.940
k-NN 0.830 0.940 0.960 0.880 0.920
RF 0.890 0.920 0.910 0.880 0.900
LDA 0.810 0.960 0.960 0.830 0.890

Table 6
F1 of mixed syndromes detection using different features and classifiers.

F1 score Geometric LBP Geo+LBP Gabor Geo+Gabor

SVM-RBF 0.600 0.837 0.870 0.821 0.810
Linear SVM 0.595 0.829 0.930 0.789 0.857
k-NN 0.541 0.850 0.905 0.667 0.778
RF 0.686 0.789 0.757 0.667 0.722
LDA 0.655 0.905 0.909 0.667 0.744
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Fig. 9(b) shows the ROC for the mixed syndromes detection using
linear SVM. The AUROC of geometric, LBP-based texture, combined
features with geometric and LBP-based texture, Gabor jet and com-
bined features with geometric and Gabor jet were 0.904, 0.981,
0.989, 0.960 and 0.980, respectively. The performance of geometric
features for mixed syndromes detection degraded compared to
Down syndrome, probably due to the fact that multiple syndromes
with different symptoms were included in the mixed syndrome
dataset.

5. Discussion

A framework for automated detection of genetic syndromes, in
particular Down syndrome, has been proposed. The supervised
scheme includes facial landmark detection, feature extraction, fea-
ture selection and classification. The approach can easily be
adapted to the detection of other genetic syndromes associated
with facial dysmorphosis.

Conventional statistical models such as ASMs, AAMs and their
variants have been widely applied to face alignment. However,
they suffer from some limitations. ASMs only consider the object
boundary, but not the sufficient appearance information of the
object. Additionally, they assume independence of the shape and
appearance models. On the other hand, AAMs need complicated
piece-wise affine texture warp operations that may be prone to
errors. Moreover, they often perform poorly on unseen faces. Tra-
ditionally, both ASMs and AAMs use PCA to build statistical shape
models and may not always accurately capture local shape varia-
tions (Ballester et al., 2005; Reyes et al., 2009). Compared to ASMs
and AAMs, CLMs have several advantages: (a) better discriminative
and generative on unseen appearance; (b) more invariant to global
illumination variation and occlusion; and (c) modeling objects as
ensembles of low dimensional independent local texture patches.
From Table II, it can be seen that CLMs outperformed AAM signif-
icantly (p < 0:001) in every group and region (Fig. 9), especially for
the Down syndrome and mixed genetic syndrome datasets, which
have large shape variations. The superiority of CLMs is also sup-
ported by the cumulative error distribution in Fig. 8 and the fact
that the area under curve of CLMs is much larger than that of AAM.

To address the inaccuracies in shape description by PCA, an ICA-
based model was proposed in this paper. Unlike using PCA, the ICA-
based model does not assume Gaussian distribution on data and
can capture local shape variations. To select dominant ICs in terms
of sample variance and locality, a novel non-parametric data-dri-
ven ordering method was proposed based on entropy. The entropy
served as a good metric for locality of ICs. The ordering criterion
considered data variance, data magnitude and locality of ICs. We
also validated the ordering method on PCA. The ordering of PCs
by entropy was identical to that by eigenvalues (variance). The
principal modes of ICA shown in Fig. 3 depict local variations
instead of global changes as PCA does. From Table 1, ICA-based
CLM outperformed PCA-based CLM, but not significantly. The rea-
son may be the trading off b between the shape constraints and
data-driven likelihood in optimization (8). In this paper, b was
empirically set to 0.01 which puts more reliability onto the data-
driven term than shape constraints. Besides, ICA is a statistical
description of the data that needs large datasets to train. As the
ICs of ICA are not orthonormal, ICA needs high dimensions to
describe shapes. Our current dataset containing hundreds of
images may still be limited to represent the shape space, especially
for the diseased populations of mixed genetic syndromes. But data
collection is on-going and a more accurate shape space description
can be expected using more training samples.

The different facial morphology between healthy subjects and
patients with genetic syndromes lead to two clusters in the shape
space indicated by the big difference of mean shapes between
healthy groups and Down syndrome shown in Fig. 5(a). To delin-
eate the shapes more accurately in different groups (i.e., healthy,
Down syndrome and mixed genetic syndromes), a two-level hier-
archical CLM was proposed. The first level locates landmarks using
the power of a larger and general dataset. Then the second level
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refines the landmarks using best fitted models of anatomy and dis-
ease. The ICA-based HCLM outperformed CLMs significantly
(p < 0:01), as shown in Table 1 and Fig. 7. The cumulative error dis-
tribution curves in Fig. 8 show that the ICA-based HCLM has the
largest area under curve for the detection of genetic syndromes.

The landmark detection performance depends on image quality
and shape variations. Large image noise (i.e., non-discriminative
features on landmarks) or large shape variation can cause poor
search results. However, at the second level of HCLM, the accuracy
of landmark detection improved substantially. Conceptually, our
method targets classes of data in a hierarchical fashion that can
be generalized to applications that have well defined priors, as well
as to the segmentation and registration of images.

There are general technical shortcomings that apply to the
ICA-based HCLM as well. First, the limitations of the classifiers
used to model local texture may lead to false positives. Subse-
quently, the optimization can converge to false locations or local
minima. This usually happens on landmarks that lack prominent
texture features, such as landmarks between the eyebrows and
the nose tip in our application. Secondly, HoG is an intensity-
based descriptor and its performance is influenced by local illu-
mination changes. Finally, the quadratic fitting can be treated
as a form of smoothing to the response map that may induce
poor approximations. For Down syndrome detection using
machine learning techniques, the combined features of geometric
and Gabor jet (though very similar to the combined geometric
and LBP-features) achieved the highest accuracy of 0.967 and F1

score of 0.956 using LDA. The overall accuracy of the automatic
Down syndrome detection system was 0.954, given by factoring
the best classification accuracy of 0.967 with the best face detec-
tion accuracy of 0.987. The face detection can be improved in the
future by using a controlled protocol for the acquisition of photo-
graphs. Our method based on 2D facial image analysis outper-
formed the methods based on 3D facial modeling whose
highest performance of control-syndrome discrimination was
87% (Hammond et al., 2004). Similar conclusions could be made
for mixed genetic syndromes detection. An overall accuracy of
0.957 was obtained by correcting the mixed syndromes detection
by the factor of face detection accuracy. Although the current
mixed syndrome dataset is small, promising results of the exper-
iments proved the feasibility of the framework extensible to more
general genetic disorders.

The geometric and texture features had similar performances
for our syndrome classification tasks. The geometric features are
associated with specific genetic syndromes, such as the orientation
of eyes, the asymmetry of the face, the size of nose normalized to
the size of the face and palpebral fissure. They are suitable to
describe the facial morphology of most genetic syndromes, as indi-
cated by their good performance on the mixed genetic syndromes.
Different studies found different preferences to geometric features.
In this study, the feature selection leads to ’’explainable geometric
features’’ that correspond to clinical evidence for DS diagnosis,
such as upward slanting eyes, small nose, flat profile and protrud-
ing tongue. Such clinical related feature selection not only confirms
the clinical findings of DS, but also brings new knowledge and
opportunities to the genetic screening field. The texture features
generally had a slightly better performance than geometric fea-
tures, probably due to the fact that anatomical information is
already embedded in the computation of the texture features since
they were extracted around each detected landmark. LBP-based
texture features and Gabor jet achieved comparable performances.
All metrics improved when combining the geometric and texture
features. Moreover, all classifiers obtained competitive perfor-
mance, but the linear classifiers (linear SVM and LDA) outper-
formed slightly the non-linear ones (k-NN and SVM with RBF). It
may indicate that the data is linearly separable.
The proposed framework can be applied to a range of other
medical image analysis tasks. The current method applied to 2D
images can be extended to 3D facial imaging which may provide
more critical features and higher accuracy. The hierarchical statis-
tical model could be similarly applied to image segmentation and
registration. In this hierarchical fashion, the first level model helps
locate the landmarks (i.e., rough segmentation or alignment) using
the power of a larger and general dataset; and the second level
refines the application using the best fitted model of anatomy or
disease. The framework for genetic syndromes detection follows
a standard computer-aided detection scheme that can be extended
to other disorders associated with dysmorphosis/malformation.
Moreover, disease severity can be analyzed by using regression
techniques based on disease-specific features. Finally, models of
personalized disease development could be analyzed using HCLM.
6. Conclusions

We proposed a framework for automated Down syndrome
detection using non-standard frontal facial photographs of
patients. Facial landmarks were located using an ICA-based hierar-
chical constrained local model. To sort the ICs with respect to data
variance in ICA, we also proposed a non-parametric data-driven
ordering method based on entropy. The ICs sorted by the proposed
ordering method highlighted local shape variations. The two-level
structure of HCLM significantly improved the accuracy of landmark
detection over CLM. Based on the detected facial landmarks, dis-
ease specific geometric features and local texture features were
extracted and selected to describe the facial morphology and
appearance. Finally, several classifiers were employed to discrimi-
nate between the Down syndrome and a healthy population. The
highest accuracy of 0.967 and F1 score of 0.956 were achieved by
the combined features with geometric and Gabor jet using LDA.
The framework was also validated on a more challenging dataset
with mixed genetic syndromes. In spite of the large diversity of
the mixed syndrome dataset, the combined features with geomet-
ric and LBP-based texture features achieved 0.970 accuracy and
0.930 F1 score. The automated computer-aided screening of
genetic disorders from simple home photography of variable qual-
ity can bring genetic expertise in areas without access to special-
ized clinics and create affordable, instant and accurate solutions
for doctors worldwide.
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